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A Communications Front-End Processor (FEP) was
implemented for a Digital Equipment Corporation (DEC)
VAX-11/780 wusing a DEC LSI-11/23 microcomputer. The
LSI-11/23 serviced eight DEC VT=100 terminals and
communicated with the VAX-11/780 over an Able Computer
Technology, Inc Direct Memory Access (DMA) interface. This
investigation proceeded from a FEP design provided in a
previous work and culminated in the Telecon 'C!' compiler
language coding of those design specifications. The design
was translated into structure charts defining software
module functions and interfaces, Program Design Language
(PDL) was then used ¢to outline the processing steps in a
structured programming format for each software module, A
data dictionary was constructed to document the data and
functional module interfaces, The code was implemented in a

'top-down' manner,
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N CHAPTER 1

A

-, INTRODUCTION

‘ﬁ 1.1 Purpose -

<

}

3

» ‘Ea The purpose of this investigation was to design,

A

.j implement, and test software through which a Digital

L Equipment Corporation (DEC) LSI-11/23 microcomputer could be
configured as a Communications Front-End Processor (FEP) for

¢

4 a DEC Virtual Address Extension (VAX)-11/780 minicomputer

7

within the Digital Engineering Laboratory (DEL) of the Air
Force Institute of Technology (AFIT). In its FEP
configuration, the LSI-11/23 would provide an interface
between the VAX-11/780 and the terminal-related activities
of the VAX users,

The LSI-11/23 would service all VAX-bound terminal 1I/O

L)
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;E interrupts, assembling the input character-by-character
?§ fﬁ- until a complete command 1line had been assembled. The
(: . LSI-11/23 would then route this complete message to the
.é; VAX-11/780 via a high speed Direct Memory Access (DMA) link.
fg Return traffic to the terminal would be handled in a similar
- manner. The VAX response (character, line, page, or file)
g: would be sent along the DMA to the LSI-11/23 which would
E% then route it at the proper terminal speed to the user who
" initiated the activity. The System Physical Device Topology
E is depicted in Figure 1-1.

<.

-

3

;R 1.2 Background -

S @

% This investigation is the 1logical continuation and
E: relies heavily upon material developed in a previous effort
~ [1]. This previous investigation justified the FEP project
i; by establishing it as a cost-effective solution to the
2ﬁ resource saturation problem occurring within the DEL
= VAX-11/780. Resource saturation is the condition of a
E% computer system when it can no 1longer support additional
2§ workload demands placed upon its resources [1:3],

;g The VAX-11/780 resource saturation condition was shown
{f [1:16] to consist of three components: (1) Overcrowding of
%)

-1
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the VAX I/0 structure as the number of total system users

S increased; (2) Increased numbers of pending I/0 requests as

the number of goncurrent users increased; and, (3) Reduced
central memory availability brought about by the increased

number of concurrent system users. All three components

il were shown [1:16-18] to be adequately addressed by the FEP
concept.
'l A highly comprehensive Requirements Analysis was then

developed ([1:18-26] by considering (1) FEP System level

Requirements; (2) Hardware Requirements; and, (3) Software

Requirements. This latter analysis was performed from the
complimentary and increasingly implementation oriented

o perspectives of the user, the petwork, and the designer. A
G summary of the culminating model - the Designer Perspective
Software Sub-System Requirements - appears in this report as

Table 1-1., The complete model is reproduced [1:94-112] 1in

this report as Appendix A.

1.3 Problem Statement -

;{ The problem pursued during this investigation was ¢to
l design, code, test, and document the DEC LSI-11/23 portion

of the DEL FEP network.
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Table 1-1 Designer Perspective Software Requirements

Requirement Description

Local Computer Network
Two Processors
Communications Link
Software On Each Processor
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Front-End Software

Support User Terminals
Virtual Link
Information Routing
Message Assembly/Disassembly
Link Assignment Strategy

Perform User Tasks
Operating System Tasks
Special Functions

Comm Link Management
Control Comm Link
Assemble Comm Link Message
Transmit Comm Link Message
Receive Comm Link Message
Disassemble Comm Link Message
Error Check Messages

Host Software

Support User Terminals
Virtual Link
Information Routing
Message Assembly/Disassembly
Link Assignment Strategy

Perform User Tasks
Operating System Tasks
Special Functions

Comm Link Management
Control Comm Link
Assemble Comm Link Message
Transmit Comm Link Message
Receive Comm Link Message
Disassemble Comm Link Message
Error Check Messages
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Table 1-1

Designer Perspective Software Requirements (Cont'd)
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Host Operating System
Multi-Programmed Environment
Mass Storage
Comm Link Support
High Level Language

FEP Operating System
Support for Maximum Terminal Population
Mass Storage
Comm Link Support
High Level Language

Consistent User Interface
Provide "Single User"™ Environment
Consistent With VAX/VMS Operation
Single-User/Host Operations
Control/Management Operations
Terminal CONNECT
Terminal DISCONNECT
Command Interpreter
Procedural Assistance
Single-User/Host Operations
Control/Management Operations
HELP Operation
Easy to Learn and Use
Control/Management Operations
HELP Operation
Terminal CONNECT
Terminal DISCONNECT
Processing Support Invisible to User
Single-User/Host Operations
Control/Management Operations




[f Table 1-1 Designer Perspective Software Requirements (Cont'd)

Requirement Description

5

5.1

50101
5.1.2
5.1.3

5.2

5.2.1
5.2.1.1
5.2.1.2
5.2.1.3
5.2.1 u3o1
5.2.1.3.2
5.2.1.303
5.2.2
5.203
5.2.4
5.2.4.1
5.2.4.1.1
5.2.4.1,2
5.2.4.1.3
5.2.4.1.4
5.2.4.2
5.2.4.2.1
5.2.4.2.2
502.’4.3
5.2.“0301
5.2.5
5.2.501
5-2.502

Operating Environment Compatibility
Physical Plant Compatibility
Power Source
Temperature Range
Humidity Range
Academic Compatibility
Unattended Operation
Startup Procedure
Shutdown Procedure
Asynchronous Intermediate Processing
User Level Messages
System Level Messages
Queueing System
Support for 8 Interactive Terminals
Support for Line Printer
Support for Study of LCN
Collect Performance Data
System Level Status
Terminal Session Statistics
User Session Statistics
System Queue Statistics
File Transfer
Transfer To/From Host
Disk Media
Peripheral Sharing
Route Qutput To Printer
DELNET Integration
Single-User/DELNET Operations
Control/Management Operations
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?j Table 1-1 Designer Perspective Software Requirements (Cont'd)
v

e Requirement Description

N 6 Supportability

: 6.1 In-House Maintenance

- 6.1.1 Hardware

I 6.1.2 Software

e 6.2 Expansion

o 6.2.1 Modular Software

= 6.2.1.1 Functions

6.2.1.2 Functionally Cohesive

£ 6.2.1.3 Hierarchical Structure
5 6.2.1.4 Loosely Coupled
'2' 6.2.2 Physical Configuration
o 6.2.2.1 Terminals
2 6.2.2.2 Processors

N 6.2.2.3 Comm Links

K 6.2.3 Inspect Configuration
N 6.2.4 Modify Configuration

7 T Minimum Cost

» 7.1 On-hand Components
= 8 Data Security
» 8.1 No Requirement
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1.4 Scope -

This effort was limited to implementing the LSI-11/23
portion of the FEP for several reasons, among which -~- time
constraints, the level of software risk, and an expanding

VAX configuration --- were the most crucial,

It was recognized early that the FEP system would have
to operate effectively and dependably in a heavy-use
environment, Therefore, careful design, "flawless" coding,
and meticulous testing were mandated from the onset to
ensure a reliable product. To successfully implement the
FEP, a thorough understanding would have to be gained of the
VAX/VMS operating system - its services and interfaces as

‘j’ well as 1its <capabilities and 1limitations. A similarly
thorough understanding would be required of the LSI-11/RT=11
operating system. Furthermore, the nature of the DMA link
would have to be thoroughly understood. As time passed, it
became clear that the pursuit of this thorough understanding
for Jjust one of the computers could well occupy the

productive efforts of one MS thesis investigation.

Software risk is a measure (not always quantifiable) of
the possible exposure to processing corruption introduced by
newly created software,. The greatest risk applies to
long-standing data bases and library files which would have
to be re-created from dated checkpoint files and, if

)

Y - 0 -




possible, tediously brought up-to-date by recreating the

modifications which had occurred since the last checkpoint.
The DEL VAX supports several thesis projects currently in
progress and departmental Data Base classes. Conversely,
there are no users requiring the dedicated use of the DEL
LSI-11/23. For the few users who do have occasion to use
the DEL LSI-11/23, the possiblity of cross-contamination of
user files is non-existant because each wuser reboots the
system at the start of a user session and physically removes
their diskettes at the termination of their session. While
the LSI-11/23 FEP implementation bears the lesser risk, its
realization will benefit the riskier VAX implementation by
providing a driver/debugger capability during the VAX FEP

development effort.

The final major reason for targeting the LSI-11/23 as
the initial FEP implementation was the configuration
upgrades that were occurring for the VAX. These upgrades
included both hardware and software and would have
transformed what was to have been a risky software
development effort into a possible perilous effort. These
upgrades are projected to taper off with time -~ thereby
restoring a degree of stability to the VAX-11/780 FEP

development environment,

- 10 =
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- 1.5 Approach -
.\-E -
~- -
; The Software Engineering techniques that were used
E throughout this effort can be classified as "top-down" and
'i "structured”, Both of these techniques have proven to be
_ useful [25] during the Software Development Life Cycle of a
} project. Development tools and documentation aids used
N throughout this effort include "Structure Charts" ( ref
Appendix B ), a "Data Dictionary"™ ( ref Appendix C ), and

é Program Design Language (PDL).

.

. 1.5.1 Software Development Life Cycle =~
;5 To better control the development of a project,
<
A software managers have identified six separate stages
, ‘]’ through which software projects pass; these stages are
'E collectively called the Software Development Life Cycle
» [25:198]:

ow 1. Requirements Analysis

~ 2. Specification
$ 3. Design

s 4, Coding

3 5. Testing

6. Operation and Maintenance

'ﬁ 1.5.1.1 Requirements Analvsis - The Requirements Analysis
; focuses on the interface between the computer, used as a
; tool to solve some problem, and the people who need to use
j it. A Requirements Analysis can aid in understanding both
A

-~ <>, -

-11 -
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y the problem and the tradeoffs among conflicting constraints,

v thereby contributing to the best solution [25:199].

1.5.1.2 Specification - While Requirements Analysis seeks
; to determine whether to use a computer, Specification seeks
to define precisely what the computer is to do, but not how
to do 1it. Issues that are examined at this stage include

input and output record formats, database layouts, algorithm

AL,

selections, etc [25:199].

1.5.1.3 Design - In the Design stage, the algorithms
called for 1in the Specifications are developed, and the
overall structure of the computer system takes shape. The
system is divided into small parts (modules) with

A constraints as to function, size, and speed [25:200].

1.5.1.4 goding - Coding 1is usually the easiest stage.

High-level languages and structured programming simplify the

PR -

task. In one study, Boehm [26] found that 64% of all errors

occurred in design, but only 36% in coding. Hamilton and

«®avs

Zeldin [27] report that in the NASA Apollo project about 73%
of all errors were design errors. It appears that coding
has been mastered better than any other stage of software

X development [25:200].

a 1.5.1.5 Testing - The testing stage may require up to half
: of the total development effort. Testing is divided into

2 three distinet operations: 1) "Module Testing"™ subjects

- 12 =




each module to the test data supplied by the programmer;

2) "Integration Testing" tests groups of components
together; and 3) "Systems Testing" involves the test of the
completed system by an outside group [25:2001].

1.5.1.6 Operation and Maintenance - These first five
stages, collectively forming the development activities,
account for only 25% to 33% of the total effort required
during the 1life of the system [25:201]. Maintenance costs

ultimately dwarf development costs.

It should be clear that each software development stage
may influence earlier stages, The writing of specifications
gives feedback for evaluating resource requirements; the
design often reveals flaws in these specifications; coding,

testing, and operation reveal problems in design [25:202].

It should also become obvious that the particular stage
at which an error is detected directly effects the cost of
correcting that error. Modifications made to the project
have a M"rippling" effect that propogates in both directious
from the point of change., For instance, customer
dissatisfaction with a test result could evolve because the
requirements analysis did not precisely describe the
customer's desires. In effect, the wrong problem was
solved. If this flaw were discovered during the

Specification stage, the cost of modification would be

- 13 -
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considerably 1less than it is after coding has been

completed.

1.502 e C i U -

The Software Engineering Techniques used in developing
the software system included Top-Down Design, Top-Down

Development, and Structured Programming.

1.5.2.1 JTop-Down Design - Top-down design is a technique

in which a programmer first formulates a subroutine as a
single statement, which is then expanded into one or two of
the basic control structures discussed in paragraph 1.5.2.3
(Structured Programming). At each level, the function 1is
expanded in increasingly greater detail until the resulting
description becomes the actual source language program.
Using this approach, also called "stepwise refinement", the
program is hierarchically structured and is described by

successive refinements [25:211].

1.5.2.2 =Dow e - This is another technique
for implementing hierarchically structured programs., Here
the top-level routines are written first, and the 1lower
level routines, called stubs, are written to interface with
these. The stubs return control after printing a simple
message and may return some fixed test value., The stub is
eventually replaced by the full module which would then

include <calls ¢to other stubs. In this manner, an entire

- 14 a
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g; system can be gradually developed and tested [25:212].
;b' R 1.5.2.3 ctured i - A major devélopment in
:;: facilitating the programming task is known as "structured
iz programming™. The premise here is to use a small set of
?: simple control and data structures. A program then is built
tﬂ by nesting these statements inside each other. This method
%ﬁ restricts the number of connections between program parts
2 and thereby improves the comprehensibility and reliability
Eﬁ of the program, The "if-then-else", "while-do", and
é; "sequence" statements are one commonly suggested set of
tf control statements for this type of programming [25:211].
Asés 1.5.3 e c tati ids -
3
R y @ Three Development Tools and Documentation aids were
‘i: chosen from among the many currently available. Selection
;; criteria included a) clarity of presentation, b) user
SE familiarity, c¢) ease of modification, and d) availability of
ég automated storage and retrieval.

:i Structure Charts were chosen over Structured Analysis
;; and Design Technique (SADT) diagrams because they were rated
iﬁ‘ higher in "module communication®™, "training need", and
fi "proliferation®™ [28:68]. Likewise, Data Dictionary entries
ié were chosen over other database structure representation
53 tools such as Data Structure Diagrams due to the higher
:E; degree of maintainability and clarity of expression
b i - 15 -
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[28:72-89] provided with a data dictionary. PDL
(pseudocode) was chosen to represent software behavior
instead of techniques such as flow charts to take advantage
of PDL's clarity characteristics of explicitly representing

control structure and nesting level depictions.

1.5.3.1 Structure Charts, - Structure Charts ( ref

Appendix B ) provide a visible and convenient method for
portraying the interrelationships between the individual
software modules, Hierarchical and scope of control
relationships can be easily seen, Also, parameter passing,
in the form of data and control flags, between modules can

be effectively identified.

1.5.3.2 Data Dictionary - A Data Dictionary ( ref Apperaix

C) is a document in which the names, attributes, and
relationships of software data items and functional modules
can be described. It serves as a cross-reference locator
for the various constants, variables, and procedures
appearing throughout the source listings. The functional
module entries contain a Program Design Language (PDL)

summary of the software logic.

1.5.3.3 Program Design Language (PDL) - PDL ( ref Appendix
C) 1s a type of language which contains two structures:
"outer" syntax of the basic control statements ( ref para

1.5.2.3) and an M"inner" syntax that corresponds to the

- 16 =
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application being designed. The inner syntax is English

statement oriented, and is expanded, step by step, until it
expresses the algorithm in some programming language

[25:212].

1.6 Overview Of Thesis =

This thesis concentrates upon the software design and
implementation of a previously specified FEP [1] system.
The Requirements Analysis was accomplished in this previous
effort and 1is summerized in this report in Chapter 2.
Chapter 2 also describes several System Design Decisions
made during the course of this current investigation. Next,
the Network Design and Protocol Issues are discussed
(Chapter 3). The thesis continues with the Software Design
and Implementation (Chapter 4), the Software Test and

Evaluation (Chapter 5), and the Conclusion (Chapter 6).

Appendices include the Software Requirements Analysis
(Appendix A), LSI FEP Structure Charts (Appendix B), LSI FEP
Data Dictionary (Appendix C), LSI FEP Source Code Listings
(Appendix D), LSI FEP Memory Load Map (Appendix E), LSI FEP
User's Guide (Appendix F), and LSI FEP Programmer's Guide

(Appendix G).
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CHAPTER 2
REQUIREMENTS ANALYSIS AND DESIGN DECISIONS

LA

In this chapter, the top level "System Level
Requirements" [1:15-26] are examined and then prioritized

for implementation. It is from this basic requirements

MM EENEN

‘:i definition and the step-wise decomposition of these

A

requirements that the final "Designer Perspective Software

s

Requirements® (Appendix A) was created. Design Decisions

and Trade-offs are then examined and justified.

This chapter also discusses the capabilities and
limitations of the LSI-11/23 microcomputer hardware and
software in addressing the LSI FEP requirements. This
chapter (along with Chapter 3) describes the decisions made
during the first 3 Software Development Life Cycle
[ para 1.5.1 ] stages (Requirements Analysis, Specification,

and Design) of this software project.
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2.1 System Level Requirements -

The problem previously investigated [1:5] 1involved
resolution of the VAX resource saturation condition. To
solve that prdblem, eight subordinate requirements ([1:18]
were identified :

Local Computer Network (LCN)

Host (VAX) Operating System

FEP (LSI) Operating System
Consistent User Interface

Operating Environment Compatibility
Supportability

Minimum Cost

Data Security

@1 OVN =W —

These System Level Requirements and their decomposed
sub-groupings are discussed 1in the following paragraphs.
G The numbers within the parentheses refer to the system

requirements depicted in Table 2-1.

2.1.1 Local Computer Network -

The FEP topology specified a 1local computer network
(LCN) (1 connecting two processors (1.1) with a
communications link (1.2). Network software (1.3) would be

required for both processors [1:18=21].

2.1.2 Host Operating Svstem. -

Functions required of the VAX operating system include

2
(%
R Y
L
[

‘
¢
l"J
“d
E
i)
ro,
r

capabilities for supporting a multi-programmed environment
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lfﬁ Table 2=~1 System Level Requirements
e
» RS
f i = Requirement Description
X TTTTTTmmmmmmmmmmmmmmmmmm e
J&- 1 Local Computer Network
O 1.1 Two Processors
- 1.2 Communications Link
> 1.3 Software On Each Processor
-
-.j: Host Operating System
A o1 Multi-Programmed Environment
s o2 Mass Storage
. .3 Comm Link Support
A4 High Level Language
?Eé FEP Operating System
'O .1 Support for Maximum Terminal Population
> 2 Mass Storage
s .3 Comm Link Support
-~ A High Level Language
’l
N Consistent User Interface
o, Provide "Single User" Environment
~Is Consistent With VAX/VMS Operation
e

Procedural Assistance
Easy to Learn and Use
Processing Support Invisible to User

* o o o
NEWND =

Operating Environment Compatibility

~N 3 VOO OVON (LAGRG RS RO IO R R RE, R, RV ) ) SEHEEEEE WWWWW NN

.1 Physical Plant Compatibility
1.1 Power Source
1.2 Temperature Range
oA 1.3 Humidity Range
o .2 Academic Compatibility
o 2.1 Unattended Operation
‘Cp 2.2 Support for 7 Interactive Terminals
N 2.3 Support for Line Printer
i 2.4 Support for Study of LCN
™ 2.5 DELNET Integration
..-
= Supportability
N .1 In-House Maintenance
e o2 Expansion
i 2.1 Modular Software
e 2.2 Physical Configuration
.40
- Minimum Cost
S0 o1 On-hand Components
/l
e v - 20 -
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(2.1), at least one mass storage device (2.2), the DMA comm
link (2.3), and the high level language (2.4) selected for
the software implementation [1:21=22].

2.1.3 EEP Operating System. -

Functions required of the LSI operating system include
capabilities for supporting a multi-terminal environment
(3.1), at least one mass storage device (3.2), the DMA comm
link (3.3), and the high level language (3.4) selected for

the software implementation [1:22-23].

This requirement serves to minimize the amount of
"re-learning®™ required by the VAX user to access the VAX
through the LSI FEP. Specific functions include providing
all concurrent users with the full spectrum of VAX
capabilities available to a single user (4.1) connected
directly to the VAX. Furthermore, any special procedures
necessary to operate the FEP system must be consistent with
the VAX/VMS functional interface (4.,2), and a method of
obtaining assistance (4.3) on the procedures should be
provided. Finally, the user interface must be easy to learn
and use (4.4) and the processing necessary to support it

should be virtually invisible (4.5) to the user [1:23].

- 21 =
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Physical plant compatability (5.1) requires the FEP to
function within the power (5.1.1), temperature (5.1.2), and
humidity (5.1.3) ranges existing within the DEL. Academic
compatability (5.2) requires the FEP to run unattended
(5.2.1) while supporting eight (expandable to 16)
concurrent, interactive user terminals (5.2.2) and at least
cne line printer (5.2.3). As a teaching tool, the FEP
should support the study of the LCN environment (5.2.4),
Finally, the FEP must be capable of full integration (5.2.5)
into the Digital Engineering Laboratory Network (DELNET)
[1:24].

In-house maintenance (6.1), wusing DEL resources, is
required for hardware and software components. Potential
system expansion (6.2) of the physical configuration (6.2.1)
as well as individual software modules (6.2.2) requires the
flexibility provided by current software engineering
practices [1:24-25].

2.1.7 Mipimum Cost. -

This requirement implies the selection, whenever
possible, of network hardware/software components already

on-hand (7.1) or readily available to the DEL [1:25].
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No specific requirements were listed under this topic

[(1:25]. Furthermore, since VAX processing of classified
information was not expected to occur, then this Systenm
Level Requirement (Requirement 8 in Table I) was eliminated

from Table 21,

2.2 Requirements Prioritization -

The possibility of not implementing the entire FEP

system during the course of one thesis effort was recognized

(ia as a highly probable event, Therefore, a priority ranking
of the System Level Requirements was accomplished ¢to
establish an implementation ordering. This section contains

these priority decisions which directly drove the software

design and coding efforts.
Those requirements which were constraints included:

a. Most of the Local Computer Network (1) --- the lone
exception being the degree of sophistication of the
Software on Each Processor (1.3),

b. The Physical Plant Compatability (?.1

) portion of
the Operating Environment Compatability (5

)y

c. The In-House Maintenance (6.1) portion of
Supportability (6),

- 23 -
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e d. The Minimum Cost (7).

{ ‘ Other requirements identified capabilities already in
f; existance within the VAX/VMS and LSI/RT-11 operating
S

:;I systems. These included:

o =

.; a. The Host Operating System (2)

-: f

35 b. The FEP Operating System (3)

- These observations left the following areas in which
.ﬁ prioritization ranking could occur:

-

7‘ a. The Software on Each Processor (1.3) portion of
i~ Local Computer Network (1),

ol

‘. L]

e b. Consistent User Interface (%),

.'-J

- (iB ¢c. The Academic Compatability (5.2) portion of
‘ Operating Environment Compatability (5),

S

:j d. The Expansion (6.2) portion of Supportability (6).
%

s 2.2.1 Iop Priority, -

o

.

" The first priority decision made was in the area of

Processor Software (1.3). It was decided to concentrate the

ﬁi efforts of this thesis on implementing the LSI portion of
LY
K+’

= the FEP system requirements ( ref para 1.4 ). Host network
;E software would be limited to a driver/debugger application
Ei program to manage the DMA traffic at the VAX end of the
2, communications 1link. This program would initiate DMA
TR - 24 -
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transfers, respond to incoming comm 1link ¢traffic, and

0

Cly

AR
I' }

display the comm link traffiec upon a VT=-100 interactive

terminal,

—y
PN
.

Certain requirements were viewed as absolutely
necessary =--- either from a network point-of-view or from an
operator point-of-view. Requirements designated as
essential fell into one of two categories

a, If the requirement was a specific function, then it
was implemented before any lower priority function,

b. If the requirement described a design strategy,
then it served as a design guideline and molded
follow=on design decisions.

N a e,

'G Requirements identified as high priority include:

¢ 2.2.2.1 Provide Single-User Environment., - Of all the
System Level Requirements, this one most closely relates to
the overall reason for the FEP concept «-- namely to solve
. the VAX resource saturation problem. This requirement
basically means that each concurrent user will experience an
environment in which they could imagine that they were the
S0le user connected directly to the VAX, Implied within

LI W RS W L NS

this definition are several important concepts:

A. Reliable Terminal/Process linkage in both
directions. This requires the FEP software to

communicate the terminal requests to the proper

i |+ RN -
A e

»
>

N - - 25 -

N - FN NN A

rd
o LES A ) PP T Cal kA%, A5, PR 0t S s S e R R “.1'. AL N PEL TR I e "'4"' .._. - -_". N .~...--‘ A L. \.-.‘_-‘._ .- ‘.._
e P e e N T oty WV ak TV IS, PSR ARPRY




process executing on the host and to return the
proper, uncontaminated response from the host ¢to

?E S the appropriate terminal.

; 7 B. Terminal response delay should not be noticably
Y- longer during FEP operations than the delay which
- could reasonably be expected to occur during
Y single~user operation, This requires fast
:: executing code and rapid movement of data.

C. The full repertoire of VAX/VMS commands must be
~n available to each concurrent user without adding
_;: any FEP-unique command overhead to his use of the
boe FEP. This implies a processing transparency
.. requirement for the LSI FEP software.

S
i \_-
- 2.2.2.2 € v t - This function
o,
fs: implies that all services normally provided by the host's

Ty

terminal device drivers must now be provided within the LSI
FEP so that the VAX/VMS would be presented with a Consistent

{i User Interface.

2.2.2.3 Unattended Operation, - Since the host VAX

operates in an unattended configuration, its LSI FEP

1)
LRy P Uy W

s

extension should be designed to not require any additional

GRS -

. manning overhead.

RS

= 2.2.2.4 Support for 7 Interactive Terminals. - Support for
o 8 Interactive Terminals ( ref para 2.1.5 ) could not be met
Ei due to system limitations. The LSI-11/23 hardware
fé components reside within a Plessey Peripheral Systems

; MICRO-II based computer system [2:1-3]. The Plessey

i PM-MFV11A Multifunetion board provides four Electronic

- Industry Association (EIA) RS232 ports which may be used for
T o
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console device interface, printer, modem, or spare terminals

_ [3:1-1]. Port 1 is permanently assigned to the console,
?l leaving only 3 ports on the PM-MFV11A card for spare
terminals. A DLV11-J card was inserted into the LSI-11 bus

- to provide 4 additional asynchronous serial interfaces
(ports) to the FEP, These two cards provide a total of only
7 (not 8) interactive terminal interfaces. Therefore,
requirement 5.2.2 (Table 2-1) was changed to reflect the
current physical 1limitation of Support for 7 Interactive

Terminals.

[ NOTE: Although not designed for this
purpose, the console can be used as the eighth
terminal and software support for this
o contingency was written, However, all LSI FEP
: system error and status messages will be output
‘ta to the console screen. This could become quite

annoying to an interactive user stationed at
this console.]

2.2.3 Medium Priority, -

Assigned to this category were functions which were
desirable for early implementation, but not required for the
basic FEP to operate. These functions could have been
é deferred for implementation in a follow-on thesis
. investigation if time ran out during the current thesis

effort. Medium priority functions include:
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2.2.3.1 to Learn and Use, - This function specifies
:g n that the user not be burdened with additional operating
‘i overhead in order to communicate his requests to the VAX.
:§ This requirement 1is consistent with the high priority
E;S requirement to Provide a U"single-user" Environment ( ref
a para 2.2.2.1 ). With the successful implementation of this
.; high priority requirement, it is expected that a minimum
$ operating overhead will fall out as an inevitable
o by-product.
S
(x
;E 2.2.3.2 Processi igible to the User, - This
;' requirement specifies that the wuser need not know where,
§ within the network, his requests are processed. It 1is
§ absolutely ¢transparent (and of no importance) to him that
4‘. (;% terminal device driver/interrupt service functions, for
53 example, have been removed from the VAX processor to the
E LSI-11/23 processor. As with the previous medium priority
‘; requirement, it 1is expected that Invisible Support to the
.§ User will be satisfied during implementation of the high
Ei priority Provide a "Single-User" Environment requirement.

2.2.3.3 Support for LCN Study - This requirement specifies
the periodic ¢trapping of system queueing data for later,
off-line reduction and analysis. Although providing a
significant opportunity to monitor network status in a
dynamic environment, this requirement's implementation is

not essential for the FEP system to function.,

»

~
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'~
[ :;
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2.2.3 " Expansjon, - This requirement, which is decomposed

intc Modular Software and Physical Configuration specifies a
flexible implementation which would easily accomodate system
modifications such as the addition of more terminals or
software function/subroutines. This requirement was
assignead a medium priority primarily because it's
implementation conflicts, at times, with that of the higher
priority requirements. For instance, modular software
engineering practices encourage a minimum of data-structure
sharing between software modules. This concept requires
each module to define the data items and structures that
will be required during its execution., On the LSI-11/23
these locally defined data items are created each time the
subroutine 1is called and destroyed each time the subroutine
@ exits., Although well-designed from a software engineering
perspective, this repeated creation and destruction of the
same data definitions is counter-productive in a real-time,
interrupt-driven application. The additional processing
overhead required to 1isolate modular data creates an
unacceptable delay in the network processing, especially
those functions that service interrupts. For these reasons,
the Expansion requirement has been assigned a medium
priority so that implementation conflicts may be resolved in

favor of the higher priority tasks.
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Requirements assigned in this category include those
which are desirable, but less important than even the medium

priority tasks. 1Included within this category are:

2.2.4,1 Procedural Assistance, - This function specifies
the need for "HELP" commands to be made available for the
user to operate the network, Ii is envisioned that, if the
requirements for "Single=User" Environment ( ref para
2.2.2.1 ) and Easy to Learn and Use ( ref para 2.2.3.1 )
have been properly implemented, then the requirement for a
"HELP" file will be near non-existent. Therefore, a
decision as to the need for its implementation should be
deferred until after the other two requirements have been

implemented.

2.2.4,2 t =Li er. - This requirement,
part of the original network design [1:35], specified a
serial line printer to be connected to the LSI,. However,
the current effort is directed at implementing the basic FEP
system and then enhancing it as resources permit. Under
this concept, moving the printer from the VAX to the LSI
becomes an enhancement rather than a high priority
requirement, The driving goal during the early
implementation stages is to free the VAX of the interactive

I/0 overhead by relocating the terminal device
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o

j%l driver/interrupt routines to the LSI. To move the printer

;?j s functions concurrently would be to expose the initial FEP

(K implementation to a higher risk factor than 1is clearly
warranted at this early stage. Delaying the printer
relocation will also simplify the test and evaluation stage

’ of the initial implementation.

R

!

‘tb 2.2.4.3 DELNET Integration, - This function pre- supposes

N

hE the existance of the DELNET. Pending the implementation of

,Ej the DELNET, this requirement will be assigned a low priority

P status.

2 '

A

*.-'.:.

A 2.3 Design Decisions And Tradeoffs -

o

ﬂ'ﬁ GE§ Several situations requiring major design decision

.é? trade-offs were encountered during this investigation.

).\':

-2 These were considered "major" design decision trade-offs

hi\ because their resolution affected and guided further design

=

R issues. Throughout the FEP effort, additional M"minor"

" -‘" .

e trade-off decisions were made which influenced the

o implementation of specific functions ( i.e. size of buffers

j%i and headers, etc.). Discussion of these "minor" issues is

‘ 'L.'.

;g deferred wuntil the functions themselves are discussed,

ﬁj{ These "major" issues are discussed in the following

e

r paragraphs.

o

"
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< This is a familiar trade-off decision often faced by
the application programmer. In most applications, a program
can be made to execute faster only at the expense of
increased memory requirements, Likewise, memory may often
be saved by recoding the program to execute slower. Rarely
will a programmer be able to concurrently optimize both

program parameters.

The FEP system is no different than most real-time
applications. It was expected to function in a dynamie
environment, servicing a variable number of randomly
arriving "bursty" terminal requests. This environment would

) be best served with a fast executing program which would
'[; minimize the chance for FEP saturation (and its resulting
loss of data) when the system was pushed to its maximum

activity levels.

Supporting this "speed" over "size"™ decision was the
availability of the RT-11 Extended Memory (XM) Monitor
{7:4.1]1. The XM monitor provides a usable memory capacity
four times that of the standard RT-11 Single Job (SJ)
Monitor [7:4.6]. Paragraph 2.3.7 describes how the RT-11

monitor was to be utilized,
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= e It was recognized early that all incoming data traffic
L to the LSI-11/23 would have to be serviced by honoring an
éi I/0 interrupt. This was required because the LSI wuses a
- single memory location, the Receive Data Buffer (RBUF), for
f receipt of character data. Ensuing characters will
fﬁ over-write the previous character regardless of whether that
’ previous character has been retrieved by an application or
é systems program, If the RBUF for each terminal was serviced
'; synchronously, then valuable processing time could be wasted
{ checking ports at which no new data had arrived since the
i prior servicing.

3 On the other hand, interrupt-driven Input servers would
G only execute when needed and could be constructed to contain
Z the minimum amount of processing needed to fetch the
EZ character, store it away, and perform mimimal immediate
R response for a select subset ( i.,e., =--- backspace, carriage
g return, control-C, etc,) of the possible character set.

-

' Similar reasoning would seem to have advocated an
f: interrupt-driven output server as well., However, three
;§ important considerations suggested synchronous servicing of
; output character traffic as a better approach.

;; a, Although the receipt of input data was random in
L nature, the output of data traffic would be totally
2 under program control.

AR

:: R
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i b. Like the RBUF, the Transmit Data Buffer (XBUF)
3 could be overwritten with ensuing characters if the
AR serial interface was not provided a sufficient time
e o interval during which it could transfer the

{ previous character.

N ¢c. It was considered highly likely that incoming data
X interrupts c¢ould occur while the LSI was busy
executing an output interrupt routine,

This last concern presented two possible treatments:

a. Disable interrupts while processing an interrupt.

“§ b. Allow nesting of interrupts.

Both approaches presented drawbacks, Locking out

i: interrupts would present a high probability for lost data
IE because the RBUF of a fast keyboard typist could be
. G overwritten before the LSI was notified of a new character's
3 presence there. Nesting of interrupts would slow down the
é processing due to the overhead 1involved in storing and
“ retrieving register information required for the orderly
é resumption of an interrupted routine, Nesting of interrupts
é would also require the additional overhead of designing,
< coding, and testing re-entrant subroutines.

3

Both of these problems can be avoided by implementing a

-0

synchronous servicing discipline for outbound characters
from the LSI. A polling method could be implemented in
which the Transmit Ready bit in the Transmitter Control and
Status Register (XCSR) would be interrogated prior to the

-
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t. program moving the next character into the XBUF. This bit

I~

r? is set by the hardware when the serial interface is ready to

accept the next character [20:507]. Usually, polling would
consist of the software executing a tight loop until the bit
was set. For the FEP system, any loop idling for indefinite
time durations would have to be minimized. Conveniently,
however, at 1least one indefinite loop is mandated for the
system. This loop is the large idle~loop that encompasses
all non-interrupt processing functions. This loop will be
entered after system initialization and iterate continuocusly
until the system is terminated. The polling routines were

selected for inclusion within this large loop.

If the Transmit Ready bit in XCSR was set when checked,

(E; then the next output character would be moved to XBUF. If
the bit were not set, then the next synchronous task would

be executed and a recheck of XCSR would be delayed until the

next pass through the loop. Since most iterations of the

large 1loop would not find new work, it was projected that

this scheme would introduce very little additional delay in

the movement of output characters to the target device. On

the other hand, all XCSR/XBUF pairs could be interrogated

within the same loop, thus economizing the wait process when

output data was available for more than one device.

- 35 =

g

by

P P e‘.
v e
.

¥ .

",

».

"

N

v,

o




2.3.3 e s y -

Device Handlers (drivers) are routines that provide the
interface to the computer hardware devices. The handlers
drive, or service, peripheral devices and manage information
transfer between memory and the devices [7:2.19]1. Device
handlers are usually stand-alone programs which must be
loaded 1into physical memory before they can be used. An
interrupt service routine, on the other hand, is coded as an
integral part of the application program. This routine is
called by the main program to initiate an I/0 transfer. The
routine then returns execution control back to the
application program until the transfer is complete «-- at
which time the device issues an interrupt. This interrupt
forces a transfer of execution control back to the interrupt
service routine which can then take appropriate action
(restart the I/0 transfer, return to the program, or

possibly retry the transfer in case of an error) [T:6.2].

The major advantages in using Device Drivers are that they:

A. Provide device independence for the application
program

B. Can share processor time with other processes

C. Are simple to use

The major advantages in wusing In-line Interrupt Service
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Routines are :

A, Their speed of execution

B. The amount of control information they provide

Device independence was never a design consideration
because DEC VI-100's were specified [1:34] as the
interactive terminal devices. Since no other process was
expected to be simultaneously executing on the LSI-11/23,
there was no requirement to ensure process-sharing of
resources. Simplicity of use was not, by itself, sufficient
justification for using Device Drivers. On the other hand,
speed of execution was a critical component for real-time
applications and supported the high priority requirement to
"Provide a 'Single-User' Environment" discussed previously
( ref para 2.2.2.1.B ). Providing additional control
information was a Dbenefit whose implementation cost was
negligible. Therefore, the third "major" design decision
was to implement In-Line Interrupt Service Routines rather

that Device Handlers.

2.3.4 Device Priority. -

Specifying the device priorities amounts to determining
the servicing order when simultaneous interrupts occur.
Although the LSI-11/23 allows four interrupt levels, it was
decided not ¢to utilize ¢this feature due to the interrupt
nesting problems that could occur [ 20:178-180 and
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- para 2.3.2 1. Instead, device card placement on the LSI
‘E . UNIBUS would be used to enforce device priority. When
{ devices of equal priority level request an interrupt,
priority is given to the device electrically closest to the
processor [20:350]. Since the overall goal of the FEP is to
. reduce the VAX workload, then DMA traffic could not be
% allowed to back-up within the host. Therefore, the DMA |
i device was selected as the highest priority device, the
terminals next, and the System Operator Console (SOC) last.

However, system constraints prevented this exact

s ordering from being implemented. The UNIBUS is contained
within the Plessey chassis. The Plessey orders the

P P

priorities of the 9-slot UNIBUS backplane slightly

P s A

G differently. The PM=MFV11A multifunction board is allocated
) first priority before any other cards. This means that the

\‘

System Operator's Console (SOC) port and the other 3 serial

o 4 .
PR Ar

I/0 ports on that card will have a higher interrupt priority
than the DMA card. The 4 port serial I/O interface card,
! DLV11-J, will still be dinserted further away from the
processor than the DMA card. Those software functions whose
: servicing order is arbitrary will be coded to discriminate
in favor of rapid movement of DMA traffic. (Thesg and other

items of Software Design are discussed in Chapter 4).
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Mapping is the process of associating Virtual Addresses
with Physical memory locations [7:4.18]. A Virtual Address
is a value in the range of 0 through 177777 (octal). It is
a 16-bit address within a program's 32K-word address space
-==- created at assembly time and modified during the linking
process., A Physical Address is the actual hardware address
of a specific memory location. In the RT=11 Extended Memory
(XM) environment, Physical Addresses 1lie 1in the range 0
through 777777 (octal) because the XM Memory Management Unit
(MMU) appends two additional high order bits to the 16-bit
Virtual Address to create a Physical Address space of 128K

words.

Virtual Mapped jobs load into memory at offset 500
(octal) from the start of the user address space [T:4.26].
Since all Jjobs can only access memory addresses within their
user address space, virtual Jobs cannot access addresses 0
through 477 (octal). Privilege Mapped jobs load into memory
at offset 0 and can access all of memory [7:4.27]. Physical
Addresses 60 through 477 (octal) are used by the RT=-11
monitor for interrupt vector linkages. These vectors are
loaded with the addresses of the interrupt service routines
which are to assume execution control upon device issuance

of an I/0 interrupt.
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Since a previous design decision ( ref para 2.3.3 )

‘
:
e
Y I

.

indicated the preference for In-line Interrupt Service
Routines over Device Handlers, it becomes necessary to be
able to access these interrupt vectors and load them with
vector information. Since Virtual Mapping cannot access

these locations, Privileged Mapping is required.

A memory load map of the final LSIFEP program mapping
is included as Appendix E.

2.3.6 ocess nsit S ate. -

The XM monitor can support multiple programs, although
only one can Dbe actively using the processor at any given
time. The non-active jobs may have been placed in their

‘]ﬁ current wait state for various reasons: blocked awaiting
I/0 completion, pre-empted by a higher priority job,

hybernating for a pre-determined period, etc.

When the RT-11 scheduler commands the processor to run
a different job, the monitor executes a Context Switch
[7:3.23]. Context switching is the procedure through which
the monitor save's a job's context - its machine environment
and important job-specific information - and begins

execution of another job.

The following information is saved in a context switch

[7:3.29]:
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Processor Status Word (PS)

Program Counter (PC)

Stack Pointer (SP)

Registers RO through RS

e. Kernal Page Address Register #1 (PAR1)
!! f. Memory Management fault trap vector

. Break Point Trap (BPT) vector

« Input/Output Trap (IOT) vector

« JTRAP vector

g

h

i

;: j. System Communication Area (locations 40-52)

k. Floating Point Processor (FPP) registers
l, FPP status word

‘? m. Stack

n. Impure data area

Applications programs execute in User State, during
which time Context Switching is enabled. However, the
monitor forces a transition to System State whenever it
determines that a potential Context Switch must be delayed.
Typically, these situations occur when the monitor is
executing and 1is modifying important data structures. The
System State ensures that no other application program can
interrupt the monitor, gain execution control of the
processor, and contaminate the data structure modification

process before it has completed [7:3.24].

--------------------
................
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;f Any I/0 interrupt issued while the system is in System
i_ o State will be delayed until User State is re-entered. This
(__ ” could present serious consequences for the FEP system. The
EE; VAX-to-LSI DMA transfer would function as a high bandwidth
'éi input from an independent source. It 1is conceivable that
1“\ data could be 1lost and error conditions not be recognized
:& immediately if these interrupts are delayed for too great a
Eés period of time. For this reason, it is imperative to limit
o the number of transitions to System State as well as the
;ﬁé duration of those System State processes which come under
ig programmer control. These include certain types of 1I/0
;2, transfers, programmed requests (.PROTECT, .CHCOPY, .INTEN,
EE etec.), and XM mapping requests issued from within the
v$£ . program [7:3.24].

'~§ 2.3.7 RI=11 Extended Memory (XM) Utilization. -

if Low Memory is the physical memory between 0 and 28K
:‘ words (addresses 0 to 177777). Extended Memory is the
:% physical memory above the 28K word boundary (addresses
ﬁi 200000 to 757777) [7:4.1]1. The topmost 4K words (addresses
he- 760000 to 777777) form the I/0 Page and are reserved by the
”i: operating system for register usage and I/0 transactions.
;Eﬁ Portions of the FEP software reside in Low Memory along with
fﬁ all of the RT=-11 XM Monitor software. Other portions of the
'éi FEP software are mapped to Extended Memory with the aid of
?3 the Memory Management Unit (MMU) [7:4.81].
s
> - 42 -
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There are two ways [7:4.4] to map portions of a program

}'.-
e
j; &3* to Extended Memory. One 1is by issuing XM programmed
{ requests from within the program itself. The other way is
,E to generate the entire executable program image at link time
g‘ by explicitly directing the linker to map specific segments
J to Low Memory and others to Extended Memory [9:11.4]. This
A.
5& latter approach was selected because it allowed more
Eﬁ flexibility and speed of change when sSuch changes were
required in the mapping assignments. Furthermore, this
o
’ij decision supports the need to limit the number of programmed
Q\'.
?ﬁ requests ( ref para 2.3.6 ) 1issued by the LSI FEP
; application software.
~
ﬁ: Certain constraints are forced upon the mapping process
- <jp by the LSI hardware and software architectures [T:4.8]:
ﬁ a. Interrupt service routines must be located entirely
;ﬁ within the low 28K words of memory.
" b. Interrupt service routines must neither reside in
] nor reference addresses within the range of 20000
) through 37777.
Wy
2
With these restrictions in mind, all software
:. processing 1logic for the LSI FEP was intended to reside in
;‘ Low Memory. All buffers of significant size would have been
; allocated to Extended Memory. This isolation of data from
g instructions would have allowed independent "tweaking" of
3 either without causing massive readjustments in the other to
]
1 -
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accomodate the change.

However, during early implementation and testing,
another (undocumented) constraint was discovered which
precluded this assignment scheme., Apparently, in addition
to residing entirely within low memory, an interfupt service
routine can only reference data 1locations within lower
memory. Attempts to write to buffer areas in extended
memory from within low memory interrupt service routines
resulted in 1low memory instructions being overwritten with

data.

Since these buffer areas had to be allocated to low
memory, a real dilemma developed as to exactly which program
functions could be removed to extended memory. The final
discriminant was whether the function could potentially be
called by an interrupt service routine. The eventual memory

assignment strategy is discussed in Chapter 4.

2.3.8 High Level Language Selection. -

Two high level languages were implemented for wuse on
the LSI-11/23 in the DEL: NBS Pascal and TELECON 'C!'., One
inherent limitation with Pascal is that address selection is
accomplished by defining pointers over whose values the
programmer had no control. Also, the setting of interrupt
vectors would be impossible in NBS Pascal because the

address of the vector could not be specified by the
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programmer. A third NBS Pascal 1limitation is that the

address of a subroutine could not be fetched or moved.

These limitations could be circumvented by implementing
these critical functions at the assembly language level, but
this approach would detract from the high maintainability
and expandability requirements already specified ( ref para
2.1.6 ). The 'C' programming language [21, 22] possessed
none of these limitations. Therefore, it was chosen as the

implementaion language for the LSI FEP,

Although another 'C' compiler product was available
from Whitesmiths [29, 30], it had not been received by the
DEL prior to the implementation phase of this investigation,
For this reason, the Telecon *'C!' compiler was chosen for

source program compilation.

2.4 Summary -

This chapter described the system 1level requirements
for the LSI FEP, It then prioritized these requirements to
facilitate an orderly design and coding phase. These
priority categories included top priority, high priority,
medium priority, and low priority. The chapter concluded

with an examination of the design decisions and trade-offs
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which occurred due to conflicting constraints and LSI-11/23

N capability (or 1inability) to adequately address the system

requirements,
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CHAPTER 3
NETWORK DESIGN AND PROTOCOL ISSUES

This chapter describes the design of the communication
network. In order to clarify and resolve the network
issues, the system topology will be studied from a network

@ node perspective rather than from the physical device
perspective of Figure 1-1, These issues are discussed 1in
terms of physical and logical nodes, which are defined and
then 1identified. The chapter then continues with a
presentation of the protocol requirements at the various
network layers. The FEP System Network Node Topology 1is
contained in Figure 3-1.

3.1 Logically Connected Nodes =

ﬁi This type of node represents a software module which

executes as an autonomous, specialized function within the
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1. LSI System Manager (LSM)
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2. LSI Terminal Manager (LTM)
3. LSI Link Manager (LLM)

4, LSI Printer Manager (LPM)
5. VAX Link Manager (VLM)

6. VAX Process Manager (VPM)
7. VAX System Manager (VSM)
System Network Node Topology
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network. Data is moved between logical nodes using a packet

o~ switched [5:116] concept. Seven nodes were identified:

L RARAANRAD
Pl

i i d

-

3.1.1 LSI System Manager (LSM) -

a5

LSM Executes the interrupt routines and other functions
to manage the LSI System Operator's Console (SOC) through

which is exercised operator control over the LSI system.

f

The LSM controls the SOC/LSI interface.

3.1.2 LSI Terminal Manager (LTM) -

LTM Executes the interrupt routines and other functions
to manage the seven User Terminals (T1 - T7). The LTM
controls the TTx/LSI interface.

't; 3.1.3 LSI Lipk Manager (LLM) -

LLM Executes the interrupt routines and other functions

to manage the LSI end of the LSI/VAX interface,

3.1.4 LSI Pripter Mapager (LPM) -

LPM Executes the interrupt routines and other functions
to manage the LSI Serial Line Printer (SLP). The LPM
controls the SLP/LSI interface.
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3.1.5 i M VL -

(: VLM Executes the interrupt routines and other functions

to manage the VAX end of the LSI/VAX interface,

VPM Executes all functions required to interface

DMA-delivered traffic with the VAX/VMS Process Management,

_ Memory Management, and other system functions. The VPM is
;j the only logical node which does not service an I/0 device.
_::
A 3.1.7 VAX System Manager (VSM) -
VSM Executes the interrupt routines and other functions
;l to manage the VAX System Operator's Console (SOC) through
(}ﬁ which is exercised operator control over the VAX system.
) The VSM controls the SOC/VAX interface.
04
-
‘f 3.2 Physically Connected Nodes -
\
f Physically connected nodes are logical nodes which are
o+,
$; connected to each other by means of a physical data link of
K some type. The possible data links include: a) Serial; b)
- Parallel; and c¢) DMA 1links. No requirements have been
» defined for parallel data transfers within the FEP system.
y _
3 - 50 -
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The physical data paths within the FEP system include:
bﬁ ﬂ} a) Peripheral/LSI interface; b) LSI/VAX interface; and c¢)
ﬁl Peripheral/VAX interface. Of these three, only the LSI/VAX
'y interface connects logical nodes (LLM and VLM) at both ends.
Therefore, these two nodes are the only physically connected

nodes in the system.

3.3 Protocol Layers -

The discussion of protocol layers begins at the 1lowest
(Physical) level and progresses upward using the ISO
Reference Model [5:15]). This model is included as Figure
3-2. The network issues at each level are examined and

‘j; applied to the FEP/VAX environment.

3.3.1 Physical (Laver 1) =-

Issues normally addressed at the Physical level include
Multiplexing [5:103]1, Terminal Concentration [5:122], Packet
Assembly/Disassembly [5:122], and Error Control [5:125-132].

3.3.1.1 Ierminal Multiplexing - Terminal Multiplexing

involves wusing a device (terminal controller) that accepts
input from a collection of lines in some statie,
predetermined sequence and outputs the data onto a single

output line (the DMA 1link) in the same sequence,. Each
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(\.\_.'-} _.\‘,\\.\4.\_. R A AOADACAAC N AR R ARG

TR LT TR P) Wy 3 TN T >




D L s s T T g e s ey e R R Wl Ty Ty T Ry s ey
- o e w e W0 W LW R e T T Y S e - i A R I A - S

SN

Layer 7 Application highest

Layer 6 Presentation

Layer 5 Session

Layer &4 Transport

Layer 3 Network

-

Layer 2 Data Link

NN

Layer 1 Physical lowest
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terminal device is assigned a time slot in which only its

traffic may be transmitted along the output 1line. This
output 1line must have the same transmission capacity as the
sum of the input line capacities because each terminal may
have data to transmit when its time slot is serviced. When
a terminal has no data to transmit, the output 1line
transmits dummy fill characters during that terminal's time

slot.

The big disadvantage of Time Division Multiplexing
(TDM) 1is that when a terminal has no traffic, then its time
slot is wasted. It is not possible to simply fill 1in the
unused time slot with data from another terminal because
both sender and receiver are synchronized as to when a
specific terminalt's time slot occurs, No mechanism exists
to key the receiver that the agreed upon position sequencing
of terminals has changed without resynching the two ends.
If each terminal has traffic only a small fraction of the
time, then TDM makes inefficient use of the output line
capacity [5:121].

3.3.1.2 TIerminal Concentration - When the actual traffic
is far below the potential traffic, most of the time slots
on the output line are wasted. Consequently, it 1is often
possible to wuse an output line whose transmission capacity
is less than the sum of the 1input 1line capacities. This

arrangement is called Concentration. The usual approach is
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to only transmit actual data and not dummy fill characters.

However, this strategy introduces two new problems.

The first problem is keying the receiver as to which
characters came from which input line [5:122]. To solve
this problem, the string of characters from each terminal is
arranged into a message to which is appended a message
header prior to its release to the output 1line, This
message header contains (among other fields) the terminal

identification of the sender.

The other problem is tied to the smaller line <capacity
of the output 1line. If each terminal suddenly starts
outputting data at its maximum rate, inadequate output 1line
capacity exists to handle the deluge and some data may be
lost. For this reason, concentrators are always provided
with extra data buffers in order to survive short data
surges [5:122]. The more memory (larger the buffers) that a
concentrator has, the more it costs, but the more likely it
is to survive the short data surges. Choosing the
appropriate parameters for output 1line bandwidth and
concentrator memory size involves trade-offs. If either is
too small, data may be lost., If either is too large, then
the entire arrangement may be wunnecessarily expensive,
Furthermore, the optimum choices depend upon the traffic
statistics, which are not always known at system design time

[5:122],

- 54 -

y-.v
........




\ﬁﬂ

The FEP system will provide Terminal Concentration at

the LTM node by merging the asynchronous serial inputs from
the seven user terminals into a single data flow to the LLM
node. Although traffic statistiecs are not known at this
time, the DMA transmission rate is known to be as high as

125000 words per second up to lengths of 50 feet [18:2.1].

3.3.1.3 Packet Assemblv/Disassembly - Packet
Assembly/Disassembly (PAD) was renamed Command Completion
Sensing PAD and is deferred treatment until the Transport

Layer Protocol discussion (paragraph 3.3.4.6).

3.3.1.4 Error Control - Most Error Control at the Physical
level 1is realized in hardware. Since plans do not exist to
add hardware components, Error Control will be deferred

treatment until the Data Link Layer discussion ( ref para

3.3.2.1 ).

3.3.2 Data Lipnk (Laver 2) -

Typical issues at this 1level include Frame Control
[5:1371, Buffering and Flow Control [5:143], Sequence
Numbering [5:146], and Error Control [5:164]. The only
node-to-node path along which data transverses a physical
data link is at the LLM/VLM interface. Therefore, the data
link protocol will only apply to that interface. The
primary network effect characterizing this 1level 1is the

electrical noise 1in the physical medium. Resolution of
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several Data Link issues normally requires the construction
of a Data Link Frame Header (DLFH). Figure 3-2 contains the
format for the FEP DLFH,.

3.3.2.1 Error Coptrol - Error Control, deferred from the
Physical 1level (para 3.3.3.4), 1is provided by placing a
checksum within the Data Link Frame Header (DLFH). The
receiving node verifies this checksum with an independent
one which it calculates itself. If the checksums verify,
then the receive node "piggy-backs" an acknowledgement (ACK)
back to the sending node in the DLFH of the next reverse
direction message frame. If reverse traffic does not occur
prior to a timeout period, then the ACK is sent as a new
packet. If the checksums do not verify, then an immediate
NAK is sent to the sender who responds by retransmitting the

frame.

3.3.2.2 Frame Control - An ACK/NAK timeout is wused ¢to
ensure positive receipt of the message frame., Automatic
retransmission occurs for the frame currently outstanding if
the ACK/NAK timer expires prior to some acknowledgement of

receipt from the receiver.

3.3.2.3 Buffer and Flow Control - The DMA channel could
become a bottleneck in the system. Therefore, adequate
Buffering and Flow Control mechanisms must be used. This is

true for both ends, but is most critical at the LLM (LSI)
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field name bytes ref:
A Throttle bit 1 para. 3.3.2.3
B ACK 1 para. 3.3.2.1
C Checksum 4 para. 3.3.2.1
D Sequence Number b para. 3.3.2.4
Figure 3-3 Data Link Frame Header (DLFH)
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end because file transfers from the VAX could conceivably

saturate the LSI node. To provide Flow Control, a "throttle
bit" is provided within the DLFH. By this method, the LLM
could ACK the last frame (and there-by 1inhibit a
retransmission) but still alert the VLM to stop transmitting
until the ACK was repeated with the "throttle bit" turned
off.

3.3.2.4 Sequence Numbering - At times, the situation may

occur in which the receiver acknowledges receipt of a
message, but an electrically noisy medium damages (or loses)
that acknowledgement (ACK). According to para 3.3.2.2, the
currently outstanding frame would be retransmitted when its
ACK/NAK timer expired. The receiver would then receive a
duplicate frame of the one it had just acknowledged. To
preclude the receiver from again processing this message
request a sequence number is included in the DLFH
( fig 3-3 ). The transmitter increments this number for
each newly created message frame., The receiver ACKs each
frame it receives but only processes messages containing new

sequence numbers.

3.3.3 HNetwork (Laver 3) =

Typical issues at this level include Error and Sequence
Control [5:190), Routing [5:196-214], Buffering and
Congestion Control [5:215-225], and Accounting. The network
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<
5 is passing data "packets" between 1logical nodes at this
U

‘f oo level.

{

: 3.3.3.1 Error Control - Error Control, at this level, only
E applies to delayed packets because most data transfers

between logical nodes occur within the same machine (VAX or
. LSI). This packet passing consists of passed parameters and
common buffers between called subroutines. Therefore, in
the absence of an electrically noisy medium, traditional
'E issues of lost, damaged, or duplicate packets are not a

problem at this level,.

3.3.3.2 Sequence Control - Sequence Numbering is deferred

: to the Transport layer (para 3.3.4.5).

-

o

’ 0 3.3.3.3 Buffering and Congestion Control - Congestion

i Control is provided by implementing interface Buffers

between each pair of 1logically connected nodes. Four
pointers ( LOW, PUT, GET, HIGH ) are defined for each
buffer. LOW and HIGH define the physical 1limits of the
buffer in memory and never change. The Sending node writes
to the buffer and adjusts the PUT pointer. The receiving
e node reads the buffer and adjusts the GET pointer. If
sufficient room does not exist within the buffer for the
packet in hand, then the sending node throttles itself and
checks again later. This ensures that no logical node is

sent data for which it does not have sufficient buffer space
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to contain it.

Although circular buffering was preferred, system
limitations required that flat buffering be used in the
final implementation. This limitation revolved around the
DMA hardware which incremented an addressing register
[18:4-9] to point to the next word for data transfer. This
circuitry could not be programmed to account for buffer
"wrap-around" situations. Thus, all data words constituting
a single message were constrained to be stored in contiguous

memory locations.

3.3.3.4 Routing - Since a unique path exists between each
user (LSI) and process (VAX) pair, alternate routing is not
a consideration. Once the LSI's terminal ID (TID) and the
VAX's process ID (PID) have been established, the virtual
circuit (parts, of which, are shared by other virtual
circuits) will be known and remain static throughout the

terminal session.

3.3.3.5 Accounting - Accounting statistics are maintained
for queueing and computer performance evaluation studies,
Statistics are updated each time that a change in queue
status occurs. These updated statistics are spooled out to

disk for off-line data reduction and analysis.
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Issues at this level include Addressing and Connection

[5:325-338], Flow Control [5:338-343], Process Multiplexing
[5:343-345], Error Control [6], Sequencing and Segmentation
[6], and Command Completion Sensing PAD, which was deferred
from the Physical Layer ( ref para 3.3.1.3 ). Similar to
the Data Link Frame Header ( ref para 3.3.2 ), a Transport
Header ( ref Fig 3-4 ) is required to resolve issues at this

level,

3.3.4.1 Address and Conpection - Connection/Termination at
the Transport 1level consists of the "LOGON"™ and "LOGOFF™

requests and VAX responses. Within each Transport Header
( ref Fig 3«4 ) is a field set aside for Terminal ID. The
Terminal ID (one of 8 possible values representing one of
the 8 peripherals attached to the LSI) also constitutes the

Circuit ID in a one-to-one mapping.

The Transport Header ( ref Fig 3-4 ) also contains a
Node Identification field. This Node ID indicates from
which node queue the message originated. The primary
purpose of the Node Id is to tag the Accounting data so that

queueing statistics can be calculated.

3.3.4.2 Flow Control - Flow Control and Buffering
techniques are the same at this level as those employed at

the Network level ( ref para 3.3.3.3 ). Maximum buffer size
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will be 1initially set at 2000 characters and adjusted, if
required, during the implementation and testing stages when

empirical data becomes available,

3.3.4.3 Process Multiplexing - Upward Multiplexing is used
5 within the VPM node to transfer the terminal requests to the

proper VAX/VMS process. In this scheme, multiple Transport

connections (VT=100 terminals) all use the same virtual

4 o .-.. J ‘l'

circuit (DMA) to the host.

L g

3.3.4.4 Error Coptrol - Error Control is not required at

220020

this 1level due to the method of internally passing the data

v between nodes ( ref para 3.3.3.1 ).

3.3.4.5 Sequencing and Segmentation - Sequencing is

G normally required at this level in case a large message must

be fragmented into smaller chunks to transit the network

boundaries.

CRA AL G

At the Transport level, the data entity is the Message.
The Message size is variable so that bandwidth is not
wasted. This requires a field in the Message Header ¢to
specify the Message size. The maximum Message size is a
g function of the maximum VAX data transfer rate. If this

b number 1is large (i.e. - 25 terminal lines X 80 chars/line =

]

2000 chars), then the message may have to be Segmented with

1

Transport Header Sequencing information to identify the

3 parts (packets) of the Message while it is moving about
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) within the network. The receiving end collects all the
:S o message parts (packets) and reconstructs the original
- message in its proper order.

&: This feature is only needed for large file transfers.
A
- The only large file transfer within the FEP system consists
ff of the host sending the terminal a 1large display file.
;j Therefore, Message Segmentation would normally only be
: required at the VAX node (VPM) while Message Reconstruction
E would normally only be required at the LSI (LTM) end.
by However, even this limited application of segmentation
n is not really required. Since there can be, at most, one
a
" single outstanding frame at any given time ( ref para
>
3 . 3.3.2.2 ), there is no possibility that frames will be
~ ‘]p received out of order. Also, there 1is no special action
v that the LSI FEP software must perform upon receipt of
15
;: process-to-screen display traffic. It is transparent to the
2 LSI FEP software whether the characters forwarded to the
5 terminal arrived as part of several independent messages or
% as segmented frames of one large message. Therefore,
e segmentation and reconstruction would introduce unrequired
12 complexity into the system.

\'.

N
N However, Transport Header sequencing ( ref Fig 3-4 ),
'2 mainly used at this level for segmentation, will be retained

i as part of the "Support for LCN Study" ( ref para 2.2.2.3 )

“
. __’??_.

; - 64 -
L

.J
o
*

L T N N T T I P S T I T e I I e O L I e e T o RS IR SV SR S ¥ - ~ \‘.\.- LI I I ~

ALY & N ".: NN .",. -l‘ it .d...~‘:t' AN AT AN .‘-' ‘oo <. -'.. o .J'.'.' A A AR A

RO AR



. I B
e A e w8

oS

Ll 2 4

2877,

RNV Y Y]

..................

requirement. This Message Sequence Number will be used to
track the movement of the message through the network nodes

and queues.

3.3.4.6 Command Completion Sensing PAD - One of the LSI

(LTM) responsibilities is to assemble a complete interactive
request and ship it to the VAX. Command Completion Sensing
is the software recognition that an input line (assembled
from the terminal) is complete and ready for VAX processing.
Normally, a carriage return signifies the point at which the
request is complete (LINE mode). However, certain processes
expect and respond to individual keystroke commands
(CHARACTER or WORD mode) [7:3.4]. For those processes, the
LTM node must be "clued-in" that the process responds to
single character input. Therefore, a Mode field is included
in the Transport Header ( ref Fig 3-U4 ) where-by the VPM
node will inform the LTM node of the current "mode"™ of

operation.

3.3.5 Session (Layer 5) -

At this level, a Network Status and Control function
exists to allow the System Manager to initialize, display
status, and terminate the network. System level alerts and
warnings are generated and sent to the respective system

consoles (LSI SOC or VAX SOC).
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3.3.6 Presentation (lLaver 6) -

Functions at this level typically provide the user with
certain wuseful, but not always essential, services. Among
these services are cryptographic transformations, text
compression, terminal handling, and file transfer [5:386].
These functions are either a) not required for the FEP
system, or b) addressed at a lower protocol 1level.
Therefore, no Presentation issues were designed 1in this

investigation.

3.3.7 Application (Laver 7) -

The only Application function identified within the
system 1is the Accounting (and disk recording) of the

queueing statistics.

3.4 Summary -

This chapter described the FEP system from a network
perspective, Logical and physical nodes were defined and
identified. The ISO protocol model was used to explain the
services and requirements at each 1level of the network
hierarchy. Techniques for data movement and control within

the network were discussed. Certain traditional protocol
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requirements were eliminated and the rationale used to reach

these decisions was presented.
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CHAPTER 4

N

SOFTWARE DESIGN AND IMPLEMENTATION

This chapter describes the structural design and
implementation details of the FEP software which was
expected to execute on the LSI-11/23. It begins with a

(:B discussion of the Software Capabilities and Limitations
which influenced and bounded the implementation effort.
Next, the Software Conventions used within the program are
discussed. Then, an Overview of the Software Structure
provides a skeletal outline of the program processes.
Finally, the Synopsis of Program Modules describes the

processing steps within each major software module,

Supplementary material can be found in Appendix B (LSI
FEP Structure Charts), Appendix C (LSI FEP Data Dictionary),
Appendix D (LSI FEP Source Code Listings), Appendix E (LSI
FEP Memory Load Map), Appendix F (LSI FEP User's Guide), and
Appendix G (LSI FEP Programmer's Guide).
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b4.1 Software Capabilities And Limitations -

The 'ct language was selected for - LSI FEP
implementation because of its availability and power of
expression beyond PASCAL. The version of 'C' run on the
LSI-11/23 [21; 231 implemented most of the 1language
Capabilities [22]. Those capabilities and limitations which
are of particular importance to this thesis effcrt are

discussed in the following paragraphs.

4.1.1 Structured Constructs -

'C' provides the fundamental flow-control constructions

required for well-structured programs: decision making ( IF

(ip - ELSE ); 1looping with termination at the top ( WHILE,
FOR ) or at the bottom ( DO ); and selecting one of a set

of possible  cases  ( SWITCH ) [22:3]. Although
non-structured GOTO and LABEL constructs are provided within

the 'C' 1language, neither was used within this thesis

implementation in order to preserve the top-down execution

flow.
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4.1.2 Data Structures -

The fundamental 'C' data structures are characters,
integers, and floating point numbers. In addition, there is
a hierarchy of derived data types created with pointers,
arrays, structures, unions, and functions, 'C' provides
pointers and the ability to do address arithmetic. The
arguments to functions are passed by copying the value of
the argument., Therefore, it is impossible for the called
function to change the actual argument in the caller. When
it is desirable to achieve "call by reference®", a pointer
may be passed explicitly, and the function may change the

object to which the pointer points [22:3].

4.1.3 Global vs, Automatic Variables -

Any function may be called recursively, and its local
variables are "automatic" or created anew with each
invocation. When the function terminates, its automatic
variables are destroyed. Other than locally defined within
the function, its variables may be external (but known only
within a single source file) or completely global. Both of
the latter types remain defined throughout program execution

and can be referenced by all program functions [22:3].

B.1.4  Variable Name Lengths -

A program written in 'C' must be compiled by the 'C!
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? compiler «-- producing a macro file which must then be
assembled using the RT-11 Macro Assembler, Therefore, the
'C' source program must comply with the syntax rules of both
languages in order to produce errorless object code. The
next paragraph indicates a few areas where conflicts exist
between the syntax rules of the compiler and those of the

assembler.

Names are made up of letters and digits; the first

character must be a letter in *C' [22:33], but may be a

number for the RT-11 Macro Assembler [15:3=6]. The
underscore "_" counts as a letter in 'C* [22:33], but is
rejected as an invalid character by the RT-11 Macro
Assembler [15:3-6]. Only the first 8 characters of an

(33 internal name are significant in 'C', although more may be
used [22:33]. However, the RT-11 Macro Assembler only

recognizes the first 6 characters as unique and significant

These inconsistencies forced a more cryptic naming of

certain functions and variables than would have been

- desired.

& 4.1.5 Limited Symbolic Definition Capability -

Eg Although the vendor documentation [21] does not
reference it, an upper bound does exist for the number of
user defined symbolic constants that Telecon 'C' will

)
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support for each program [23:6]. These globally defined

f §;j constants are desirable from a software engineering aspect
fu due to the resulting ease of software maintenance. Although
s
i; the exact threshold was never calculated, "LSIFEP.C"
f? exceeded it several times during the development effort.
- Each such instance was resolved by eliminating some
T
-§: desirable symbolic constant and replacing it with its
.
- hard-coded value wherever it was referenced.
TN
-
j% 4.2  Module Communication Conventions -
S
wﬁ Very few conventions were designed into the program in
3
A
) order to simplify its maintenance. A small set of global
{ (i? variables were declared in order to minimize the intermodule
15
ﬁ. data-flow complexity. Most intermodule communication takes
=
X place via character arrays, structure tables, and indexes
: into both.
N
o 4.2.1 Character Arrayvs -
I *-.
" Three character arrays exist. "InChar" is an 1800
jﬁ element array divided into 9 parts ( 8 terminals ports + 1
: DMA port ), each containing storage for 200 characters.
~ This array accepts characters via interrupt service routine
i; processing of terminal keyboard input characters. "OutChar"
3§ is an identically configured array which contains output
d '-..\
‘~ ..
(] v
!
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characters destined for output to one of the 8 terminal

display screens. "NodeChar" is a 4000 element array divided
into 2 parts ( terminal-to-DMA and DMA-to-terminal traffic )
containing svorage for 2000 characters each. This array
serves as a queueing buffer for complete message transfers

between network nodes.

h.,2.2 Structure Tables -

Three structure tables exist. The Port Status Table
( "PST"™ ) contains buffer indexes, I/0 port addresses, and
other information desribing the status of each of 9 ports.
The Node Buffer Table ( "NBT"™ ) contains buffer indexes and
the node identification information required for moving
message traffic between the two LSI FEP nodes., The
Transport Header Table ( "THT"™ ) contains the Message
Transport Header skeleton which is prefixed to each message

prior to movement of that message to one of the node queues,.

4.3 Overview Of The Software Structure -

Utilizing the RT11XM extended memory features, the
LSIFEX.SAV executable image was created by specifying to the
RT-11 Linker the order and relative 1locations desired for
the seven object modules which form the LSI FEP software,

Likewise, the low memory features of the RT11SJ monitor were
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used to create the "LSIFEP.SAV" program image.

The source code programs which generate these seven
modules are classified according to placement within memory
and are discussed in the following sections, Program names
ending with ".C" are 'C' source programs while those ending
with ".MAC" are macro assembly language programs. A Load
Map of "LSIFEX.SAV" is contained in Appendix E. Figure 4-1
contains a graphic representation of central memory

placement of the software modules within "LSIFEX,SAV",

4.3.1 Low Memory Software -

Software placed within the confines of low memory
included those functions and data areas which were
constrained ( ref para 2.3.7 ) to reside there and those
data areas ( primarily NBUFF.MAC ) which served as filler to
ensure that the PAR1 restrictions ( ref para 2.3.7 ) were

met.

4.,3.1.1 LFEPIO,C - The LSI FEP Input/Output 'C' module is
a derivation of the Standard I/0 package (STDIO.H) included
with the 'C' compiler [22:143 and 21:8]. Routines
non-essential to the LSI FEP software and/or not supported

by the Telecon 'C!' compiler were removed in order to save

memory.




e P AT T T,

e e e G P AS EPES e e EPEe WA e - S E e 0o S . SRS M G S e G S G - — G AR G TR . P e - — o - —

a0 v o O O (4V] N O O O
£ n = ™ ~ O o r) ~ =~
~ QO ~ — &~ =3 (Te} wn O =
hLo IR O t~— = (28] - o TeY O N
=T o — (41} wmn (Vo) [Te} O o
[V o] o o (@] o (o] - — N
[\
AR - SR e Gbem DD ST R PR Y - S S . WO G S — G - Gm—— a—— /// ——— m ey Ghen E e GEan e Ghew S G w——

RT11XM
monitor

LFEPHI
LFMLHI

e s . ————— — - N NN\ ——— i ——— — o — —
0 0 N N o (=] = o o

o n ™M =r = o O (=] (=]

- QO & &~ — o = o ~

P L t~ = = - o O

. O o o - (3] n O e

W o o o o o o - -—

“ «

e rmen e SRt GnEs Cem GEem B GG AR EPAS R SR D TS EE h e G S (e Gme SR SR RS e Gau Smem D G G5 SR e e G G G A G e G Eee e

o...--- PN Z ..-. ..v..-.-d.... u.lv . 2, ﬂ\!.\ .Wn.u-q r ., \x \. ’, .,.- ‘., - --ws_.whv-\-_.- .LMJJ . \\v‘\ﬂ.‘ ‘ RS ﬁ 3 RS LS [

LSIFEX Memory Layout

Fig. 4-1

- 175 =




4.3.1.2 LFMLLO,MAC - The LSI FEP Macro Library ( Low
Memory ) assembly module is a derivation of the Telecon 'C!
Runtime Support Library "CLIB11.MAC" [21] as augmented by
previous classroom ( EE6.90 - Real Time Programming
Laboratory ) upgrades. Again, non-essential functions were
removed. The remaining program was further divided into a
portion (LFMLLO.MAC) that was constrained ( ref para 2.3.7 )
to reside in 1low memory and a portion (LFMLHI.MAC) that

could reside in extended memory.

4.,3.1.3 NBUFF,MAC - The Node Buffer macro program contains
the data item definitions which define the size and start

address of the character array "NodeChar".

4.3.1.4 LFEPLO.C - The LSI FEP ( Low Memory ) 'C' program
contains the main functions which implement the LSI FEP
processing. Program initialization, interrupt servicing,
background processing, and program termination are contained

there.

4.3.1.5 TBUFF.MAC - The Terminal Buffer macro program
contains the data item definitions which define the sizes
and starting addresses of the terminal character arrays

"InChar” and "CutChar",

4.3.2 Extended Memory Software -

Two software programs were placed into the extended
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; memory portion of the LSI-11/23 physical address space,
:f These programs contained no functions which were called by
{\ interrupt processing routines, Therefore, the PAR1
QE restriction ( ref par 2.3.7 ) did not apply to them.

R 4.3.2.1 LFEPHI.C - The LSI FEP ( High Memory ) 'C' program
? contains routines called during synchronous processing
vi events, Typically, these routines provide some low priority
- processing such as displaying some aspect of the system
,% status upon the SOC terminal screen or recording the
<,

accounting statistiecs.

A4
2 8 a

4,3.2.2 LFEMLHI.MAC - The LSI FEP Macro Library ( High

Memory ) assembly module contains those functions ( ref para

P >
g0 ¥ A e a |

4.,3.1.2 ) which could be removed to extended memory.

Typically, these functions provided communication with the

P

floppy disk files.

-

PR

< 4.4 Synopsis Of Program Modules -

Program modules reside either in 1low memory or in

" . extended memory.

I" ‘.

'!‘."—

4b.4.1 Low Memory Modules -

.

ARSL NN

The following modules perform the main functions of the

»
A

LSI FEP software.

Y -4
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2 4.4.1.1  Main - This module (module 0) is the top segment
?S - to which control is transferred by the 'C' Shell upon
{: program initiation. This module calls "InitSystem" to
: initialize the database and activate interrupts. It then
il calls T"PerfNormalActivities"®™ to perform the synchronous
S tasks ( move data between nodes, output characters to the
‘i; terminal screens, etc, ). When the SOC operator aborts the
ﬂg system ( ref. paras 4.4,1.5 and 4.4.1.15 ), then control is
L returned to this module which then c¢alls "TermSystem" to
‘ deactivate interrupts and close files. The module finishes
%5 its processing by an exit to the RT11XM monitor.
;5 4.4,1.2 InjtSystem - This module (module 1) controls the
Eg database initialization. It begins processing by opening
{ @ the LSIFEP.DAT accounting file. It then sets up the four
i? pointers ( ref para 3.3.3.3 ) into the terminal buffers
E? "InChar" and "OutChar" for each of the nine entries in the
_; Port Status Table (PST). It then sets up the four pointers
§§ into the "NodeChar" buffer for each of the two entries in
ii the Node Buffer Table (NBT). It then moves the address of
each interrupt service routine into the corresponding entry
- of the PST for easy retrieval by the "InitInterrupts”
i% routine, It then calls "InitPST" to complete the PST
<i initialization. It then calls M"InitInterrupts" for each
f§§ entry in the PST to initialize the interrupt for that port.
%

L
Vol
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h.4,1,3 InitPST - This module (module 1.1) begins

Pal
h g processing by coding each PST entry with a unique terminal

identification (TID). It then fetches and moves to the PST

N
13 the addresses of the four port I/0 interface registers:
- Receiver Control and Status Register (RCSR), Receiver Buffer
y Register (RBUF), Transmitter Control and Status Register
15 (XCSR), and Transmitter Buffer Register (XBUF) [20:221-223]
2 for each of the nine entries in the PST. It also moves the
address of each interrupt vector [20:508-509] to the nine
entries of the PST. It completes processing by initializing

the terminal mode ( ref para 3.3.4.6 ) to "LINE"™ mode.

b,4,1.4 IpitInterrupts - This module (module 1.2)

activates the interrupts for each of the nine ports defined
(ﬁb in the PST. It begins processing by setting up a Processor

Status Word (PSW) mask [20:176=17T7; 207-209]. It then saves

(in the PST) the current contents of the port's interrupt

vector and interrupt PSW. It then resets these two
; locations to the address of the interrupt service routine
% (fetched in "InitSystem") and the new PSW mask just
generated. It then turns on the Interrupt Enable bit (bit
6) of the corresponding RCSR [20:221].

4.4.1,5 SOCInterruptServiceRoutine - This module (module
1.2.1) executes when control is passed to it by the RT11XM

monitor in response to a console keyboard action at the

System Operator Console (S0C), It begins processing by
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calling "entint"™ to save the register values of the
153 interrupted program. It then copies the input character to

the input queue "InChar" and echoes the character to the
s console screen, If the character was a carriage return, the
module echoes a line feed character to the screen, If it
was a Control-C (*“C), special termination processing occurs.
X If it was a "delete" character, special processing occurs.,
If it was neither, the InChar "put"™ index is incremented for

the next character.

5 The “C input signals the SOC operator's intention ¢to

g o e o gy
2R N

abort the LSI FEP system. This input results in the module
setting the "AbortFlag" boolean variable to "YES", This

2, EEL

flag is checked in module "PerfNormalActivities",

A T"delete" character requires special treatment

because, 1instead of adding characters ¢to "InChar", this

b M AT

action results in withdrawing characters. Processing

. d
- V.5l

consists of verifying that the "delete" character was not
fA the first character typed. This ensures that at 1least one
character already exists in the buffer and can be deleted.
If such a character exists, then the "InChar" "put" index is
X decremented so that the uext input character will over-write
the character intended for deletion. Then, to clean-up the
2t display terminal, a series of T"backspace"™ and "space"
) characters are output to blank out the deleted character and

® reposition the screen cursor.
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2% % N %

Processing terminates during a call to "retint" which
restores the register contents of the interrupted program
and executes the "RTI"™ ( return from interrupt ) assembly

language instruction.

4.4,1,.6 IlInterruptServiceRoutine - This module's (module
1.2.2) processing 1is identical to that of module 1.2.1

except that it performs no special processing for the “C

input and it services character input from terminal 1.

4.4.1.7 T2InterruptServiceRoutine - This module's (module
1.2.3) processing is identical to that of module 1.2.2

except that it services characters input from terminal 2.

4.4,1.8 T3InterruptServiceRoutine -~ This module's (module
1.2.4) processing 1is identical to that of module 1.2.2

except that it services characters input from terminal 3.

4.4,.1.9 TulnterruptServiceRoutine - This module's \.0odule
1.2.5) processing 1is identical to that of module 1.2.2

except that it services characters input from terminal 4,

4.4,1,10 TsInterruptServiceRoutine - This module's (module
1.2.6) processing is identical to that of module 1.2.2

except that it services characters input from terminal 5,

4.4,1.11 T6InterruptServiceRoutine - This module's (module
1.2.7) processing is identical to that of module 1.2.2

except that it services characters input from terminal 6.
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-% 4.4.1.12 T terru vic - This module's (module

;E ;?- 1.2.8) processing is identical to that of module 1.2.2

( except that it services characters input from terminal 7.

.

i 4.4.1.13 DMAInterruptServiceRoutine - This module (module i
- 1.2.9) services all DMA interrupts. It begins processing by !
% determining the reason for the interrupt. If non-existant ‘
3 memory was accessed, it sends an error alert to the SOC., If

- the host has raised an input request, this module calls

1; "SetUpForInputDMA"™ to process the request. If none of the

é above reasons, it bases further processing upon the last

¥ reported status of the "DMABusyFlag".

fi If a word mode input was expected, the word is fetched

ﬁ and inspected. This word represents the host's word count

’\ ‘ib for an ensuing block mode transfer of data across the DMA

-3 channel., If sufficient buffer space exists in "NodeChar" to

A hold a message of this many characters (twice the word

% count), the DMA interface is programmed [18:chapter 4] to

;; expect a block mode DMA input from the host. If buffer

TS space does not exist, an error alert is issued to the SOC

:S screen,

.ﬁ If a block mode input was expected, then this interrupt

; notifies the LSI that the block tr-nsfer has completed. The

? module adjusts the NBT pointers into "NodeChar"™ and resets

% the "DMABusyFlag" to input word expected.

\ e -8 -
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i% If a word mode output was in progress, then this
‘i' if interrupt signals the host response to the block mode output
(. request. If the host is prepared to accept the data block,
- the DMA interface 1is programmed for block mode output and
;i the "DMABusyFlag" is set to block mode output in progress.
5 If a block mode output was in progress, then this
ﬂa interrupt signals the completion of the output transfer.
’ The "DMABusyFlag" is reset to word mode input expected and
f? the DMA interface is programmed accordingly.
LA
- 4.4.1.14  SetUpForInputDMA - This module ( module 1.2.9.1 )
; begins processing by setting the "DMABusyFlag" to word mode
“g input expected. It then programs the DMA interface
E: @ accordingly.
K 4.4.1.15 PerfNormalActivities - This module ( module 2 )
-% begins 1its prdcessing by displaying upon the SOC terminal
’ the time at which the LSI FEP system was activated. It then
enters the 1large system idle-loop ( ref. section 2.3.2 )
which encompasses all synchronous processing tasks. The
‘ software will continue to idle within this loop as long as
45 the data item "AbortFlag" remains equal to the boolean
Eg constant "NO" ( defined as 0 ). When the SOC operator keys
> in a control-C (“C), then "AbortFlag" is set to the boolean
‘5 "YES" ( defined as 1 ). When the bottom of the loop is
Eg reached, the status of "AbortFlag" is checked. If it equals
I~ 53}
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"YES", then the statement following the loop ( return to

Eﬁ‘ 'ﬁf "Main" ) is executed.
(
f;i Within the loop, three main synchronous tasks are done.
;ﬁ For each terminal, if new characters have been deposited in
ol the terminal input buffer by the interrupt service routines,
ﬁ% then "SrvInputQueue™ is called to service that input queue.
Aéi ' Likewise, if output characters have been deposited in one of
i the output queues, then "SrvOutputQueue" 1is called to
'ié service that output queue. If a message exists in one of
;g the node queues, then "SrvNodeQueue" is called to service
fz that message.
e
‘15 If no work exists when a particular queue 1is checked,
:*j GE) then the "put" and "get" pointers are reset to their "low"
ﬂ% value. This step is required because a previous design
fg decision ( ref para 3.3.3.3 ) disallowed circular buffering.
;? By synchronously resetting empty buffer pointers to their
Sa initialized values ( ref para 4.4.,2 ), the software ensures
?: that the full buffer capacity is available for the next data
?? entry.
b
< 4.4.1.,16 SryInputQueue - This module ( module 2.1 ) scans
N}

the input character buffer "InChar", If the character

e

77 |

currently being scanned is a carriage return or if the

terminal 1is in the "CHARACTER" mode, then a complete user

AaTAalal

T

request is present and can be assembled for DMA transfer to

Y
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the host. Otherwise, the next character in the buffer is
scanned and similar testing performed until all the
f: B characters in the buffer have been scanned.
Sﬁ If a complete request exists in "InChar™, then a check
- is made as to whether the SOC buffer is being scanned. If
t? yes, then module "EvalSOCInput" is called to determine if
g; DMA transfer is required. After this test, and if DMA
' transfer is required, then a character count is calculated
ﬁﬁ for inclusion in the Transport Header ( ref para 3.3.4.5 ).
$§ Since the DMA interface requires full word (two character
f? bytes) transfers [18:4.9], an odd number value for the
‘E; message size is incremented to make it even.

l? If buffer space exists to hold a message of this
ld (=B character count, module "MoveMsgtoNodeTTxDMA"™ is called.
‘if Otherwise, an error alert is issued to the SOC screen.
2

4.4.,1.17 EvalSOCInput - This module ( module 2.,1.1 )
Ez determines if a SOC system status request has been issued.
Eé If so, then this request will be processed 1locally within
~ the LSI and not forwarded to the host. If not, then the
,3 "goDMAFlag" is set to "YES" for "SrvInputQueue" processing.
~
1: If the SOC request is to display the PST, then
E: "DispPST" 4is called. If the SOC request is to display the
Z& NBT, then "DispNBT" is called. If the SOC request is to
Ef display the current system time, then "DispTime™ is called.
55 R .85 -
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T 4.,4,1.18 MoveMsgtol - This module ( module
;j &ij 2.1.2 ) 1is called by "SrvInputQueue" when a DMA output
{r transfer is required. This module calls module
éi "BldTransportHeader" to construct the Transport Header ( ref
i” Fig 3«4 ). It then moves the Transport Header characters
R into "NodeChar"™ followed by the "InChar® terminal request
EE characters., If the number of characters in the terminal
&: message is odd, then a harmless line-feed character is added
% to "NodeChar"™ to pad the message into an even word block.
E% Module "GatherStats" is then called to record the accounting
'?; data of this message's entry into a queue.

;§ 4,4,1,19 BldTransportHeader - This module ( module
ﬁg 2.1.2.1 ) constructs the Transport Header as defined in
_ @ Figure 3-4, Processing consists of the movement to the
éﬁ Transport Header Table (THT) skeleton of either single
ég character bytes or strings of bytes (via calls to the
o "strcopy™"” module). Also, 1integer to ASCII character
;Z conversion of numeric quantities is accomplished by call to
;a subroutine "intascii".

\ 4.4.1.,20 SryQutputQueue - This module ( module 2.2 ) moves
ii character data from "OutChar" to the Transmitter Buffer
?ﬁ Register (XBUF) for display upon the user terminal screen.
5} If the Transmitter Control and Status Register (XCSR)
£§ transmit ready bit (bit 7) is set = 1, then a new character
;x‘ can be moved to the XBUF. Otherwise, this module returns to
B
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"PerfNormalActivities" to continue other processing.

4.4.1.21 SrvyNodeQueue - This module ( module 2.3 )
controls the movement of messages between LSI FEP network
nodes. Two nodes exist. The first node (entry O in NBT) is
labeled TTxDMA and 1is wused to hold message traffic input
from the terminal which is intended for output along the DMA
interface. The other node (entry 1 in NBT) is labeled
DMATTx and is used to hold the DMA input message traffic

which is destined for output to the terminal screen.

Processing begins by scanning the Transport Header
( fig 3-8 ) to determine message 1length and terminal
identifier (TID). Subroutine "strcompare" is called to
compare the message TID with those recognized by the system
and stored as entries in the PST. If no match is found, an
error alert 1is issued to the SOC terminal screen and the
node is flushed of all message data by re-initializing the

"NodeChar" indexes.

If a match is found, then the ASCII message character
count is fetched from tﬁe Transport Header and converted to
integer via a call to "asciiint". If the node being scanned
is TTxDMA, then module "TTxtoDMAOutput"™ is called.
Otherwise, "DMAtoTTxOutput" is called.
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~
;; 4.,4,1,22 ITxtoDMAOutput -~ This module ( module 2.3.1 )
i% %&- activates the DMA output request to the host computer. If
f;‘ the "DMABusyFlag" status indicates word mode input expected
kﬁ' and the DMA Control and Status Register (DMACSR) reports the
fi DMA idle, then the DMA interface is programmed for word mode
. output and the "DMABusyFlag" is set to word mode output in
‘; progress. The word that is output is the character count of
f% the message which would be sent to the host in block mode.
s Subroutine "GatherStats" is called to record the release of
;f message data from the TTxDMA queue.

o

ix. If either condition is not met, an error alert is
Eg issued to the SOC terminal screen.

)

j 4,4,1.23 DMAtoTTxOutput - This module ( module 2.3.2 )
g: (:b controls the movement of message data (received from the DMA
:E interface) from the DMATTx buffer to the appropriate
) "QutChar®"™ buffer. First, "GatherStats" is called to record
~ the release of message data from the DMATTx queue. Next,
;E the Terminal Mode field in the Transport Header ( Fig 3-4 )
f~ is moved to the corresponding PST entry. Finally, each
;5 message character 1is copied from the "NodeChar" buffer to
}E the appropriate M"OutChar" buffer and pointers adjusted
e accordingly.

Ei 4.,4.1.24 TermSystem - This module ( module 3 ) is executed
ig once after M"AbortFlag" has been set to "YES" in
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?‘ "SOCInterruptServiceRoutine” and, in response, the large
§3 }ij loop in "PerfNormalActivities" terminates and returns

control to the top segment "Mainnm,

"TermSystem"” restores all interrupt vectors and

Processor Status Words (PSW) ( ref para 4.4.1.,4 ) to their
original contents. A message is then output to the SOC
terminal 1indicating the time at which the "abort" command

was processed and the duration of the LSI FEP processing.

8 File "LSIFEP.DAT"™ is then closed and the software exits
to the RT=11 monitor.

4.4.2 Extended Memory Modules -

""" _A ']

‘Ea The following paragraphs describe the 'C' modules which

CE AL

have been mapped to extended memory. These modules

typically provide services to the synchronous processing

'

modules described earlier ( ref para 4.4.1 ). Since these

a a

Ty

services possess no hierarchical relationships to each

other, the module ordering conventions were arbitrarily

LRI

assigned as the need for a new service became known. The

module numbers represent the order in which the modules

R

appear in the program section 'LFEPHI.C'. To preclude

T

N confusing these module numbers with those of 'LFEPLO.C',
each extended memory module number will contain an 'X!

prefix.

AU | - { O LI

N
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4.4.2.1 DispPST - This module ( module X.1 ) displays the
status of selected fields of the Port Status Table (PST)

upon the SOC terminal screen. The format of this display is

é: contained in Figure F-U4 of Appendix F.

4.8,2,2 DispNBT - This module ( module X.2 ) displays the
= status of selected fields of the Node Buffer Table (NBT)
3

- upon the SOC terminal screen., The format of this display is
>

contained in Figure F-3 of Appendix F,

4.4.2.3 GetCurrentTime - This module ( module X.3 ) calls
A an assembly language routine, ‘'gtime', which fetches the
current system time and returns it in a two word parameter
table. This module then decodes these two words, converts
4 the numbers to ASCII characters and produces a displayable

time in the format of HH:MM:SS:TT where HH = hours, MM =

A

:; minutes, SS = seconds, TT = ticks (60 ticks per second).

t Four global data items ('StartHr?', 'StartMin?',

l? 'StartSec', 'StartTic!) are defined to contain the initial

’g start-up time of the LSI FEP system., These start-up values

a are subtracted from the time calculated at system
termination to provide the elapsed time for the LSI FEP
operation. These data items are initialized with the

‘i current system time during the initial calling of

? 'GetCurrentTime!.

»
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4.4.2.4 DispTime - This module ( module X.4 ) calls
'GetCurrentTime! (module X.3) and then displays the

formatted time upon the SOC terminal screen,

4.4.2.5 CalcElapsedTime - This module ( module X.5 ) |is
called once -~ at LSI FEP system termination. This module
calls 'GetCurrentTime' (module X.3) to fetch the current
system time. It then subtracts this time from the four

start-up values and provides an elapsed time.

4.4.2.6 DispElapsedTime - This module ( module X.6 ) calls
'CalcElapsedTime!' (module X.5) to calculate the elapsed
time., It takes the elapsed time and converts the integer
values to ASCII characters and displays the result upon the
SOC terminal in the form HH:MM:SS:TT.

4.4,2.7 GatherStats - This module ( module X.7 ) records
the accounting data for LCN queueing study ( ref para
2.2.3.3 ). Calling parameters to this subroutine are a
pointer to a character string which forms a Transport Header
( ref Fig 3-4 ) and a reason code specifying which action
( 1 = queue entry, 2 = queue exit) is being recorded.
Processing begins with a call to !'GetCurrentTime' (module
X.3) to fetech the current time. The time, action code, and
Transport header are then written to the disk file
'LSIFEP.DAT* in the format specified in Figure F-5.
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4.5 Summary -

This chapter described the software design and
implementation details. It began by discussing the
capabilities and limitations of the Telecon 'C!' 1language.
Next, programmer conventions for inter-module software
communication were outlined. The chapter continued with an
overview of the software structure - describing the programs
which reside in 1low memory and those which reside in
extended memory. The chapter concluded by presenting a
synopsis of program modules which reside in the LSI FEP (Low
Memory) and LSI FEP (High Memory) programs.
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% SOFTWARE TEST AND EVALUATION
L
-
]§ This chapter describes the testing phase of the
p
Software Development Life Cycle ( ref para 1.5.1.5 ). It
,ﬁ begins with a short discussion of Testing Methodology and

ends with a presentation of the Testing Results.

o e

(1

i

g 5.1 Testing Methodology =~

>

3 Two testing strategies were used during this
f investigation. A coarse test was conducted using
;. Requirements~based testing [31:185]. A more detailed test
o was conducted using a Program-based testing [31:195]
? approach.

5.1.1 Reguirements-based Testing -

e d

The traditional requirements-based testing method is

functional testing. In functional testing, a program or

¥l a0

Y
g
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software system is viewed as a "black box"™ which accepts
known inputs, applies the relevant function to these inputs,
and generates outputs [31:185], It is usually applied over
a range of classes of input data and typically delivers
output belonging to one of a number of different possible

classes.

A rigorous functional test would include selecting the

input data classes, identifying extreme cases and boundary

conditions, and establishing the class categories for the
expected output. The successful accomplishment of these
steps pre-supposes the existence of concise and detailed

requirements and specification documents.,

Due to the general nature of the FEP Software
Requirements Analysis ( ref Chapter 2 and Appendix A ), such
a rigorous functional test could not be conducted. The
system functional requirements were presented in a

descriptive rather, than quantitative manner, Furthermore,

the full set of software requirements ( Appendix A ) was
consolidated into a summary table ( Table 1-1 ) for easier
assimilation. This summary table was then further condensed
into the page length System Level Requirements Table ( Table
2-1 ) upon which the requirements prioritization ( ref para

2.2 ) and software design ( ref Chapter 4 ) were based.

Therefore, it 1is this final capsule-format of the
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functional requirements which the functional test would be
conducted against. Since this generalized format precluded
an in-depth functional test, the goals of the functional

test were altered.

Rather than test implemented functions at a microscopic
level, it was decided that the test should be conducted at a
macroscopic level. :The resulting purpose of the test was to
identify the presence, absence, and well-being of the
functions displayed in Table 2-1. In other words, rather
than providing concise quantitative results, the test would
produce a high level survey of implementation completeness,
This test was performed mostly by inspection and it

identified functions ( ref Table 5-=1 ) which were:

a. implemented with no obvious high-level limitations
b. implemented with observable high-level limitations

¢c. not implemented (due to prioritization decisions)

5.1.2 Program-based Testing -

One of the weaknesses of requirements testing is 1its
failure to test computational features of a program which
are related to the design and implementation of the program
and which are not a part of its requirements [31:195].
Program-based t ‘sting avolves the selection of test data

which tests r.ecific computational structures of the
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208 program. The most widely studied program-based testing
methods are those that involve the selection of test data

which causes the execution of specific statements, branches,

-.';-:'
Sy
:ﬁ: or paths of the program. These methods are referred to as
e "structured testing methods™ [31:195].
'Sﬁa 5.1.2.1 Branch Testing - Branch testing was the -earliest
el
?ﬁ form of structured testing to be studied and systematically
” applied to the testing of programs [31:196]. The technique
A requires that test data be constructed that causes each
d
2 branch in a program to be transversed at least once.
7
,ﬁ- 5.1.2.2 Statement Testing - A more restricted kind of
iﬁ structured testing, statement testing, requires that each
" e statement in a program be executed at 1least once on some
s 7 test [31:1961.
s
o
~¥§ 5.1.2.3 Path Testing - Several studies of the
o effectiveness of branch testing indicates that there are
;g large numbers of errors whose existence is not necessarily
. revealed by the testing of all branches in a program
" (31:199]. Many of these errors are related to combinations
)
;ﬁf of branches and are revealed only by a test that causes a
}; program path to be followed which contains the combination.
o Path testing requires that every "logical path"™ through a
._-:1_
:}: program should be tested at least once, The difficulty with
E§ this 1idea 1is that a program which contains loops will, in
7 e
s - 96 -
N
N
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;ff general, have an infinite number of possible paths [31:199].
{
- 5.2 Testing Results -
N
™
e Both requirements-based (black box) and program-based
31 (white  box) testing were performed. As discussed
E: previously, the black box testing was conducted as a survey
n':
approach to assessing the functional completeness of the LSI

.né FEP software implementation.
ML

3

N Branch testing was chosen as the program-based testing
}é strategy because it enabled a thoroughness beyond that of
<'\-4‘

;ﬂ statement testing, yet avoided the prohibitively expensive
“ GE? effort of a comprehensive path testing. It was complemented
o throughout the software development process by informal code
53 walk~-throughs conducted by the author.

' 5.2.1 Black-box Testing Results -

".\'

o

i: Table 5-1 indicates that all of the Top priority, High
N

_f priority, and Medium priority ( ref para 2.2 ) software
,ﬁﬂ requirements have been implemented to some extent, The
. N

{ﬂ following paragraphs describe those requirements in Table
N 5-1 which failed the requirements-based testing.

,"

ﬁ 5.2.1.1 3 e c c - Although the scope of
S
‘\; this thesis project specifically limited the implementation
{: -
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effort to LSI FEP software only ( ref para 1.4 ), this

requirement was deemed an initial failure because the system
could not function properly without VAX FEP software being

implemented on the host.

5.2.1.2 Comm Link Support (Host 0/S) - Neither DEC nor
Able Computer Technology, Inc provided a VAX/VMS software

device driver to support the DR-11B Direct Memory Access
(DMA) board. This deficiency provided the single critical
limiting factor in the FEP implementation and testing.
[ Note: A possible DR-11B driver has been located
at GD Serle (Illinois) and efforts are
underway to procure a copy of this driver. ]
Without a working driver on the host end of the comm
link, most of the LSI FEP comm link software could not be
tested ( ref para 2.2.1 ). The purpose of a network
protocol is to provide mutually agreed upon handshaking
between cooperating computers, This goal cannot be realized

when the distant end (host) is not capable of handshaking.

Although Transport Layer protocol ( ref para 3.3.4 )
was implemented, no attempt was made to code the Data Link
Layer protocol ( ref para 3.3.2 ). It was not clear that
the 1latter protocol was really required and the lack of a

host driver provided no resolution of the issue,

- 102 -




e

5.2.1.3 Procedural Assistance - This function was not

implemented due to the ¢time constraints placed upon the
project and the relatively low priority placed upon this

requirement ( ref para 2.2.4.1 ).

5.2.1.4 Support for a Line Printer - This function was not

implemented for the same reasons given in para 5.2.1.3 ( ref

para 2.2.4.2 ).

5.2.1.5 DELNET Integration - This function was not

implemented for the same reasons given in para 5.2.1.3 ( ref

para 2.2.4.3 ).

5.2.1.6 Physical Configuration Expansion Support - This

function was envisioned to have included real-time control
over configuration modification [1:67]. The actual
implementation, however, does not allow the operator to
interactively modify any system parameter or database status

variable,

This function is minimally addressed with the operator
ability to display the status of select database tables and

variables ( ref para 4.4.1.17 and Appendix F ).

5.2.2 Hhite-box Testing Results -

Branch testing was applied to all branches of the
program which could be reached using keyboard inputs. These

branches included all of the terminal concentrator functions

- 103 -




LA

(3

..................................

e

;E ( ie. - interrupt handling, buffering, output, etc. ).
;? jﬁ? However, the DMA servicing code could not be reached nor
(\ tested due to the host's inability to generate or receive
_‘.-‘3: DMA traffic.

A
5.2.2.1 Support for LCN Study - Although this function
Eﬁ passed 1its testing ( ref Table 5-1 ), one limitation was
ﬁf revealed. This limitation appears to be caused by a coding
o deficiency in the LFMLHI.C library program. This program
2& ( ref para 4.3.2.2 ) contains the 'C' run-time wutilities
I"l‘

:: used for file manipulation ~-- among which, is the "fclose"
“w

A

? subroutine used to close the "LSIFEP,DAT" accounting file.
5

>

o) This subroutine fills a memory buffer with data
N

; (:ﬁ intended for a disk file. When the buffer is full, it is
-5 ' flushed and written to disk. During normal processing, this
-4

'3 presents no problem, However, upon system termination, the
A

o "LFEPLO.C" program issues the "fclose" subroutine call to
d close the accounting file ( ref para 4.4.,1.24 ), Testing
_ﬂ revealed that the "fclose" subroutine does not flush the
P
. partially filled memory buffer prior to closing the file.
s Therefore, any recorded data which 1is memory resident at
\J'

- system termination will not be written to disk.

e Another problem may exist during accounting file disk
;ﬁ writes. The source code ensures that a large enough block
Zf of free disk area 1is available before opening the
“~

T
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Cd
P’ "LSIFEP.DAT" file. However, this file grows dynamically and

~S. ij its size depends upon terminal traffic intensity. It is not
;ﬂ readily apparent what happens when the bottom of the
Sg "LSIFEP.,DAT" file butts up against the front of an existing
Ef file. Further investigation should be conducted to validate
. that the "LSIFEP.DAT" file does not grow without bound =--
j§ and there-by overwrite any existing files.
:E 5.3 Summary -
D ::
iV This chapter described the testing methodologies used
E to validate the LSI FEP software, In it, the
é requirements-based testing and program-based testing
(jﬁ strategies were defined, The results of both testing
3 approaches on the LSI FEP software were discussed.
é Limitations of the testing phase were described and
| generally attributed to the 1lack of a VAX/VMS supported
‘t device driver for the DMA interface.

One potential source for the driver had Dbeen located
and efforts were underway to procure the driver from that

source,
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M CONCLUSION

23
BN

'$: 6.1 The Problem Revisited -

NN

R ‘E’ The problem investigated during this project was to
o~ design, implement, and document the LSI-11/23 portion of the
W)

- Communications Front End Processor (FEP) system ( ref para
%Y

e 1.3 ).
':{::

A This investigation began with an analysis of the
}§ functional requirements which included prioritizing the
.:; requirements for the purpose of ordering the implemention
: . effort. Design decisions and tradeoffs were examined in the
ifi light of these priority assignments. Next, network design
- issues were discussed using the ISO Reference Model as a
‘Eé departure point for the protocol 1layers. Software design

and implementation issues were then considered with

."
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capabilities and 1limitations examined and the software

structure defined.

This investigation ended with a test and evaluation
phase conducted using both requirements-based and

program-based testing methods,

6.2 Accomplishments -

Specific accomplishments of this thesis effort can be

classified as either hardware or software improvements.

6.2.1 Hardware Improvements -

The major hardware improvement was the physical
placement of the DMA interlink boards within the VAX-11/780
and LSI-11/23 computers and connecting these boards via the
DMA cabling. Other accomplishments included insertion of
the four serial port DLV11-J card ( ref para 2.3.4 ) and
replacement of the two standard M80U44 Plessey memory boards
(together addressing memory locations 0 - 377777 octal) with
a single MSV11-E [20:468-487] card which allowed full
LSI-11/23 addressing from O0=7T77777 octal.
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6.2.2 S are ove S =

Software improvements included accomplishment of the
middle phases - Design, Coding, and Testing -~ of the
Software Development Life Cycle model ( ref para 1.5.1 ).
These phases proceeded from the Requirements Analysis and
Specification phases accomplished in a previous [1] thesis

effort.

Specific software enhancements included the coding and
testing of the Terminal Concentration ( ref Chapter 4 )
features as well as the Accounting data recording features
for the Local Computer Network study requirement. Code was
written to service the LSI-11/23 end of the DMA interface,

but resources were not available to test this scftware.

6.3 Discussion =

This section summarizes the thesis investigation from
the point of view of designer and implementer. Presentation
chronacles the problems (and resolutions) that occurred at

various points,

6.3.1 Scope -

The first hard decision to be made was 1limiting the

scope of this investigation to implementing the LSI-11/23
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portion of the FEP system. There is a tendency for every
builder to want to create an entity which is complete unto
itself. It is very difficult to confine oneself to building
a piece of some whole that will not be realized for some
time. This project provided the challenge of paring the FEP
implemetation down to a size for which a realistic effort

could be expected to produce a reasonable chance of success,

One of the early major decisions concerned assigning
certain requirements into the low priority category ( ref
para 2.2.4 ). Early expectations were that all but the 1low
priority functions would be implemented. Tagging a function
as low priority was, in effect, passing-the-buck for its
ultimate implementation to a follow-on thesis investigation.
It was paramount, therefore, that the "nice to have"
functions be properly identified and placed in the low

priority class.

6.3.3 D c on -

Decisions made immediately after function priority
selection shaped and molded the rest of the implementation
effort, These design decisions provided the guiding
framework which gave -eventual direction to the software
coding. Each decision funneled the next issue into an

.nereasingly narrow path toward resolution, It was
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imperative that the early design decisions be correct
because flexibility for change grew smaller with each

successive decision,

6.3.4 Network Design and Protocol Issues -

The network design was accomplished at too early a
stage 1in the project. It proceeded from a traditional
network approach and resulted in what \ may be an
over-designed network. The primary reason for this was
that, at this early point in the project, the capabilities
and requirements of the Able Computer Technology, Inc.

Interlink DMA interface were not fully understood.

Even now, any increased knowledge felt by the author in
this respect continues to exist only as a subjective opinion
which cannot be put to the test until a host device driver
becomes operationally available. For this reason, Chapter 3
was allowed to remain as written and its evaluation deferred

pending arrival of the testing tools.

Chapter 4 chronicled a period of time in which author
experienced the alternating extremes of exhilarating
satisfaction and nagging frustration. 1In several instances,
critical code fragments that were expected to require many

rewrites worked flawlessly the first time, On other
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occasions, errors which were as dumb as they were

transparent delayed the project for days.
6.3.6 Sof e | -

It seems that no matter how strenuously one advocates
testing as a cycle-long requirement, it always seems to be
deferred until finally addressed at the eleventh hour of a
software project. Although top- down implementation of the
code segments protects against this to a large degree, it
does not completely eliminate this panic mode of testing.
Throughout this implementation, testing seemed to lag behind
production, followed only by documentation in the race of

procrastinations.

6.4 Recommendations -

Several concrete recommendations emerged from this

study as follows:
6.4.1 - vie i -

Without a working device driver on the host (VAX) end
of the DMA link, this project would seem to be incomplete.
As stated in Chapter 5, a potential DR-11B device driver has
been located and and a copy of the driver source code has

been requested from the writer. This driver currently only
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handles word mode data transfers for the VAX-11/780 and

would have to be modified to provide the expanded
capabilities of block mode transfers for the FEP

application,

This modification does not appear to be a trivial
exercise, A firm grasp of the VAX assembly instruction set
and I/0 data base will be required as well as a good

understanding of the DMA programming.

The driver should be examined upon arrival and modified
by a qualified programmer to address the needs of the VAX

FEP.

6.4.2 Data Link Protocol -

As stated in Chapter 5, the Data Link Protocol was not
implemented primarily due to the uncertainty of its
requirement. This aspect should be further investigated

once the DR-11B driver becomes operational.

6.4.3 Buffer Sizing -

The program buffer sizes (200 characters for terminal
traffic and 2000 characters for node traffic) were chosen
arbitrarily ( ref para 3.3.3.3 and para 3.3.4.1). These

sizes may be adjusted based upon further testing.
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6.4.4 Number of Terminals -

At present, the LSI FEP will support seven dedicated
VT-100 interactive terminals and one VT-100 terminal which
can operate as the SOC or as the eighth interactive
terminal. The requirements specify‘that this configuration
should be expandable to sixteen terminals. The LSI-11/23
unibus structure should be further investigated to ensure
that enough I/O port addresses and interrupt vectors exist

for this expansion,

6.4.5 LFMLHI.C File Manipulation Limjtation -

As discussed in Chapter 5, the "fclose"™ function does
not flush the memory buffer of data destined for disk
writing prior to closing the file. This deficiency should
be corrected. At the same time, th. potential 'write
without bound' question posed in Chapter 5 should also be

investigated.

6.4.6 The Completed DEL FEP -

Finally, the whole to which this thesis effort is only
a part should be concluded. Namely, the remaining VAX FEP
software should be designed and implemented. In addition,
the low priority tasks (deferred from implementation in this

thesis) should be re-examined and implemented.
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APPENDIX A

SOFTWARE REQUIREMENTS ANALYSIS

This appendix reproduces the Designer Perspective
Software Sub-System Requirements indentified in ref [1].
This model served as the departure point upon which the

current thesis effort progressed.
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Transmission Protocol
Logical Link
Source Node
Destination Node
Message Number

Queue Control Information

Physical Link
Source Processor
Destination Processor
Message Sequence
Link Mode
Queue Length
Message Space

Queue Control Information

Checkfield
Message Terminator
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Description

Link Assignment Strategy
Multiple Links
Multiple Link Types
Perform User Tasks
Operating System Tasks
Special Functions
Comm Link Management
Control Comm Link
Physical Control
Link Mode
Message Mode
File Mode
Assemble Comm Link Message
Transmit Comm Link Message
Receive Comm Link Message
Disassemble Comm Link Message
Error Check Messages
Host Software
Support User Terminals
Virtual Link
Packet Interlock
Sequence Number
Information Routing
Logical Link
Same Processor
Between Processors
Physical Link
Between Processors
Message Assembly/Disassembly
Header
Source Terminal
Destination Terminal
Message Number
Message Length
Message Text
Alpha-numeric Characters
Transmission Protocol
Logical Link
Source Node
Destination Node
Message Number

Queue Control Information
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Description

Physical Link
Source Processor
Destination Processor
Message Sequence
Link Mode
Queue Length
Message Space
Queue Control Information
Checkfield
Message Terminator
Link Assignment Strategy
Multiple Links
Multiple Link Types
Perform User Tasks
Operating System Tasks
Special Functions
Comm Link Management
Control Comm Link
Physical Control
Link Mode
Message Mode
File Mode
Assemble Comm Link Message
Transmit Comm Link Message
Receive Comm Link Message
Disassemble Comm Link Message
Error Check Messages

Host Operating System
Multi-Programmed Environment
Mass Storage
Comm Link Support
High Level Language

FEP Operating System

Support for Maximum Terminal Population

Mass Storage
Comm Link Support
High Level Language
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Description

Consistent User Interface
Provide "Single User" Environment
Consistent With VAX/VMS Operation
Single~-User/Host Operations
Control/Management Operations
Terminal CONNECT
Terminal DISCONNECT
Command Interpreter
Procedural Assistance
Single-User/Host Operations
Control/Management Operations
HELP Operation
Easy to Learn and Use
Control/Management Operations
HELP Operation
Terminal CONNECT
Terminal DISCONNECT
Processing Support Invisible to User
Single-User/Host Operations
Control/Management Operations

Operating Environment Compatibility
Physical Plant Compatibility
Power Source
Temperature Range
Humidity Range
Academic Compatibility
Unattended Operation
Startup Procedure
Shutdown Procedure
Asynchronous Intermediate Processing
User Level Messages
Requests
Responses
System Level Messages
Entries From FEP Console
Responses to System Requests
System Level Status
Queueing System
Servers: Logical Nodes
Message Movement Strategy
Support for 8 Interactive Terminals
Support for Line Printer
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Support for Study of LCN
Collect Performance Data
System Level Status
Queue Overflow
Comm Link Errors
Terminal Session Statistics
Session Number
Terminal Number
Connect Date
Connect Time
Disconnect Date
Disconnect Time
First User File Record
Last User File Record
User Session Statistics
User Record Number
Session Number
Username
Current System
Logon Time
Logoff Time
Number Messages Input
Number Characters Input
Number Messages Output
Number Characters Output

Number Messages Sent to Printer

Number Characters Sent to Printer

Total Printer Time
Total Number Printers Assigned
System Queue Statistices
Queue Name
Current Length
Message Number
Event Time
Event Code
File Transfer
Transfer To/From Host
Disk Media
Peripheral Sharing
Route Output To Printer
DELNET Integration
Single-User/DELNET Operations
Control/Management Operations
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Requirement Description
6 Supportability
6.1 In-House Maintenance
6.1.1 Hardware
6.1.2 Software
6.2 Expansion
6.2.1 Modular Software
6.2.1.1 Functions
6.2.1.2 Functionally Cohesive
6.2.1.3 Hierarchical Structure
6.2.1.4 Loosely Coupled
6.2.2 Physical Configuration
6.2.2.1 Terminals
6.2.2.2 Processors
6.2.2.3 Comm Links
6.2.3 Inspect Configuration
6.2.4 Modify Configuration
7 Minimum Cost
T.1 On-hand Components
8 Data Security
8.1 No Requirement
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APPENDIX B
LSI FEP STRUCTURE CHARTS

This appendix contains the structure charts used in

designing the LSI FEP software modules.

GE? DIRECTORY OF STRUCTURE CHARTS
Module Nbr Module Name Page
0 Main B~ 2
1 Initialize System B- 3
1.2 Initialize Interrupts B- U
1.2.9 Service DMA Interrupts B- 5§
2 Perform Normal Activities B- 6
2.1 Service Input Queues B- 7
2.1.2 Move Message to node TTxDMA B- 8
2.3 Service Node Queues B- 9
2.3.1 TTx-to=DMA Output B=-10
2.3.2 DMA-to-TTx Output B=-11
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lf B.2 Module 1 - Initialize System -
{
+
s : :
’ {\ Initialize !
" | System ]
= ! !
> | 1
] ]
: /7 \
/7 \
" / \
e / \
s / \ \
) / \ \ i
e / \ 'l
/ \
x / \
= / \
) / \
g | ! | !
(7 | Initialize ! | Initialize !
& | PST | | Interrupts |
2% | ! ! |
% | 1.1 | | 1.2 |
/ | | | !
. 1 = index into PST
5
\
g
S
; B-3

NI AN XL R AOAIR
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3§ B.3 Module 1,2 - Initialize Interrupts -
'...V . s = {
H | Initialize |
" | Interrupts |
: | :
‘:'. l 1 02 '
~ I :
ﬂ"
‘h [ ] *
i: * L ]
&>, . .
. | i\ ! |
. | Service HAN | Service !
[ | Terminal PN | DMA !
- | Interrupts |{}}}\ | Interrupts |
A | ERERAY ! '
, ! 1.2.x J1HEEIN ! 1.2.9 |
@ : I |
] N
! NARERE
. ! N
: : N
! N
! N (ommma-
- ' \ | l
7 |
v, I
3 8 copies:
. 1 for each VT-100
( expandable to 16 )
;' NOTE: Dotted lines indicate that interrupt
. service routines are ACTIVATED by
" module 1.2 rather than CALLED
o directly. Interrupt service routines
. are INVOKED by the RT11XM operating
b system upon hardware detection of an
. I/0 interrupt.
;‘ o=,
; B4
N
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B.5 Module 2 -~ Perform Normal Actjvitjes -

Perform
Normal
Activities

2

—— Gt e . o e -

———— " " - —— ——

\
\

<=
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Service
Output
Queues

Service
Input
Queues

2.1 2.2

. by —— —— —— —
—— ey S o . - ———
——cn—y - —— —— —— ———

—— o . w—— e —

Service
Node
Quevues

2.3

e —— —— - —— ——

index into PST
index into NBT

3 K.
"n o

B-6
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- B.6 Module 2.1 -~ Service Input Queues -
{
.:;
hLY
b ! !
S | Service '
| Input !
] Queues !
\‘. ‘ ‘
o : 2.1 |
N / \
b o

Move Msg
to node
TTx-to=-DMA

Evaluate
SOC Input

2.1.1 2.1 .2

—— . maan - —— =
——— —— —— ——
————— . ——— . —————

18
- —— — —— — —

index into PST
index into NBT

% n =




o B.7 Module 2,1 - Move Message to Node TTxDMA -
~ R
{
8 ! ]
o | Move Msg !
= { to node !
| TTx-to-DMA |
1 []
] ]
, ! 2.1.2 |
:'.: ! VAN !
> / N\
5 / N
/ \ \ a
/ \ N
3 / \
/ \
> / \
: / \ \
k / \ \ r=1
~ / \ y
o / \
-~ / \
» ! i ' i
a | Build ! | Gather {
! Transport | | Statistics |
2 | Header ! ! |
) ! ] ! |
. 1 2.1.2.1 | i\ X.7 |
A | ! -\ |
>
. a = address of THT
r = reason for gathering statistics
7 ( 1 = entry into a node queue )
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Module 2.3 ~ Service Node Queues -

—— — —— —— ——p —— -

Service
Node
Queues

2.3

———a— —- e — —— -

TTx-to=-DMA
Output

!
!
!
| 23

i

—— T v g = -

/ N\

— ety oy — ———

DMA~-to=TTx
Output

2.3.2

—— S S ——

index into
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Module 2.3,1 - TTx-to-DMA OQutput -

TTx=-to=-DMA
Output

2.3 .1

Amer ey Ewes eras - ——
ey e ——— ——

<.. —— -

—— . v . cmmb . T ot T . S T . -
(.___—

Gather
Statistics

\ X.7
\

— —— o At —— ———
ey - ———

address of message in NodeChar
reason for gathering statistics
( 2 = exit from a node queue )
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| DMA-to-TTx !
i Output !
!
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e !
“ |
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2 !
"

oK '
1 @ | Gather
| Statisties

]
. I X.7
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— et et ———

address of message in NodeChar
reason for gathering statistics
s ( 2 = exit from a node queue )
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APPENDIX C
LSI FEP DATA DICTIONARY

This data dictionary is divided into two parts. The
first part 1is a dictionary of global data items and
structures ( Data Item Entries begin on page C-2 ) from
program LFEPLO.C while the second part is a dictionary of
functional modules ( Functional Modules begin on page C-20 )
from the same program, Each part contains a short

introduction and a table of contents for the section.,

C=1
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Data Item Eptries -

entries

This section contains

which are global in nature - that is, they are referenced by

more than one program module,

Data Item

Paragraph

-t

Data Item Entries (Heading)

AbortFlag
DMABusyFlag

L ]

FileOpenFlag
GoDMAFlag

LastMsgSegqNbr

NBTCharCount
NodeChar
OutChar

v

PSTCharCount
Startldx

OO0 0O0n Q
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Page
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c-10
c=11
c-12
C-13
C-14
c-15
C-16
C-17
c-18
c-19
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% C.1.1 AbortFlag -
T.' “-..
E e Item Name: AbortFlag
? Data Type: Boolean Integer
f Item Size: 2 bytes
L
. Where written: i Where read:
: !
o SOCInterruptServiceRoutine | PerfNormalActivities
N i
Description: AbortFlag is initialized to NO by the 'C!
. compiler, While it remains equal to NO
< (where NO = 0), LSIFEP.C continues to
K execute. When the operator, using the SOC
‘ terminal, keys a 'control-C!' (~C) input,
- then the software sets AbortFlag = YES
: (where YES = 1 ) and initiates the
’ TermSystem functions.
'l
| ©
“w
.‘
.
\
A c-3
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O T S A A BT R S T R o A T




C.1.2

Item Name:

DMABusyFlag =-

DMABusyFlag

Data Type: Integer

Item Size: 2 bytes

Where written:

Where read:

InitSystem

TTxToDMAOutput
DMAInterruptServiceRoutine
SetUpForInputDMA

Description:

LV R\ VE Yo

TTxToDMAOutput
DMAInterruptServiceRoutine
SetUpForInputDMA

DMABusyFlag indicates the status of the

DMA channel. Permissable values are as

follows:

DMA channel not busy

DMA word (mode) input
DMA block (mode) input
DMA word (mode) output
DMA block (mode) output

(VAX to
(VAX to
(LSI to
(LSI to

LsSI)
LSI)
VAX)
VAX)

is
is
in
in

expected
expected
progress
progress
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Item Name: DMAwc
Data Type: Integer
Item Size: 2 bytes

Where read:

Where written:

DMAInterruptServiceRoutine DMAInterruptServiceRoutine

SetUpForInputDMA

Description: DMAwe is used to store the word count of
the current DMA block transfer.
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Item Name: EndIdx
Data Type: Integer
Item Size: 2 bytes

Where read:

Where written:

—— e e - - —

SrvNodeQueue TTxtoDMAQutput
DMAtoTTxTransfer
Description: EndIdx is used as an index into the

NBT to mark the array element offset
of the last character to be moved
in the current message.

C-6
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Item Name: FileOpenFlag
Data Type: Integer
Item Size: 2 bytes

Where written:

Where read:

InitSystem

Description:

FileOpenFlag is a boolean flag that

describes the status of the file open
attempt on the accounting statistics

file.

Possible
NO =0
YES = 1

C-7

values include:

file is not open
file is open

tHon
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Item Name:
Data Type:
Item Size:

Where written:

GoDMAFlag
Boolean Integer

2 bytes

Where read:

SrvInputQueue
EvalSOCInput

Description:

SrvInpuQueue

GoDMAFlag is a boolean flag which is
used to determine whether a DMA
transfer is to occur. A DMA transfer
will not occur when a system status
request is made from the SOC terminal,

c-8
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) Pl
; ) M Item Name: InChar

':j Data Type: array

oy

fé Item Size: 1800 bytes
A% Where written: ! Where read:
o !
2628 !
»%2 SOCInterruptServiceRoutine | SrvInputQueue
A T1InterruptServiceRoutine | EvalSOCInput

N T2InterruptServiceRoutine | MoveMsgtoNodeTTxDMA
aopa- T3InterruptServiceRoutine |

1~ T4InterruptServiceRoutine |

&ﬁ T5InterruptServiceRoutine |

< T6InterruptServiceRoutine |

o T7InterruptServiceRoutine |

B SetUpForInputDMA !
3 4

i

> Description: InChar is an 1800 element array of

1 characters. InChar is partitioned by
PR \ each of the 9 entries in PST yielding

‘E’ an input buffer size of 200 chars

S for each port.
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§:; C.1.8 LastMsgSegNbr -

_é .
= i Item Name: LastMsgSeqNbr
31 DPata Type: Integer
» Item Size: 2 bytes

N

Where written: i Where read:

> |
e BldTransportHeader | BldTransportHeader
a3 1
u" ]

}E Description: LastMsgSeqNbr is a variable which
N equals the last message sequence number
" assigned to an outbound DMA transfer,
‘ When this number, incremented for

each new message, equals a pre-
¥ defined upper limit, it is reset

) to zero.

2
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X
:4",

S
.

5

N

bL

g
:

SQ
X o5,

'j N:'ﬁ.

: C-10
».

4
N




S AL NN & ad Yl sl St SR Tt A S T S

\J
> C.1.9 NBI -
~I
TNn
; . Item Name: NBT
- Data Type: structure
3
: Item Size: 24 bytes
Where written: ! Where read:
|
InitSystem | InitSyaytem
PerfNormalActivities | PerfNormalActivities
MoveMsgtoNodeTTxDMA | SrvInpuQueue
. SrvNodeQueue i MoveMsgtoNodeTTxDMA
N TTxtoDMAOutput | BldTransportHeader
N DMAtoTTxTransfer | SrvNodeQueue
N | TTxtoDMAOutput
N { DMAtoTTxTransfer
s Desecription: The Node Buffer Table ( NBT ) is
X a global communication structure
0 through which several subroutines
- . can manage the NodeChar buffer
G transactions.
1
}‘
I
.'
l
]
‘
.
4
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- C.1.10  NBTCharCount -
U
4 .-‘\;P
’ £ Item Name: NBTCharCount
{
. Data Type: Integer
Item Size: 2 bytes
Where written: ] Where read:
4
: |
o BldTransportHeader | SrvInputQueue
a { BldTransportHeader
| SrvNodeQueue
-y :
i)
Al
]
' Description: NBTCharCount is the message character
=\ count used for messages residing
‘ in character array NodeChar.
o~ NBTCharCount is always an even
:: number because the DMA transfer
~ protocol requires word ( 2 bytes )
o transfers and messages residing in
v . NodeChar are either headed for the
Y DMA or have just been received
2 via DMA.
Uy
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3 C.1.11  NodeChar -
S
Y
{' ’ Item Name: NodeChar
.i Data Type: array
b Item Size: 4000 bytes
b X ]
~ Where written: ! Where read:
™ I
2 '
o MoveMsgtoNode TTxDMA | SrvNodeQueue
< ! TTxtoDMAOutput
| DMAtoTTxTransfer
;
% Description: NodeChar .s a 4000 element character
y array which contains complete
< messages headed for ( or received
from ) the DMA interface. It is

g partitioned by the 2 entries in
» NBT into 2000 character buffers,
% one for each of the 2 node queues.
4, Pointers into NodeChar are

G maintained in the structure NBT.
e
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N C.1.12  OutChar -

S Item Name: OutChar

{

o Data Type: array

ﬁ Item Size: 1800 bytes

o

o Where written: ] Where read:

S '

._: :

R DMAtoTTxTransfer i SrvOutputQueue

e 1

Ay 1

i Description: OutChar is an 1800 element character
55 array partitioned by the 9 entries
£ of the PST into 200 character

- buffers for each of the 9 ports.

B OutChar contains characters to be
ey displayed upon the terminal screen
" of the respective port console.

N OutChar pointers are maintained in
A structure PST.
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C.1.13 PST -

Item Name: PST

Data Type: structure
Item Size: 604 bytes

Where written:

it i St e

----- R Pl N T e e

Where read:

InitSystem InitSystem

InitPST InitPST
InitInterrupts InitInterrupts
PerfNormalActivities PerfNormalActivities
EvalSOCInput SrvInpuQueue
MoveMsgtoNodeTTxDMA EvalSOCInput
SrvOutputQueue MoveMsgtoNodeTTxDMA
DMAtoTTxTransfer BldTransportHeader
SOCInterruptServiceRoutine SrvOutputQueue
T1InterruptServiceRoutine SrvNodeQueue
T2InterruptServiceRoutine DMAtoTTxTransfer
T3InterruptServiceRoutine TermSystem

T4InterruptServiceRoutine
TS5InterruptServiceRoutine
T6InterruptServiceRoutine
TTInterruptServiceRoutine
SetUpForInputDMA

|
!
!
|
i
|
!
i
!
i
!
1
i
|
1
!
i
1
!
!

SOCInterruptServiceRoutine
TiInterruptServiceRoutine
T2InterruptServiceRoutine
T3InterruptServiceRoutine
T4InterruptServiceRoutine
T5InterruptServiceRoutine
T6InterruptServiceRoutine
TTInterruptServiceRoutine

SetUpForInputDMA

uvv-‘i"'. i e vt Bt - ot~ o el op i el amg i S d _-_-.rr-»r_'_r_-_

The Port Status Table ( PST ) is

9 entry global communication structure
through which several subroutines

can manage the InChar and OutChar
buffer transactions. Also, PST
contains the port addresses of each
port as well as the addresses of

the interrupt vectors and interrupt
service routines.

Description:
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I O AT A AT TR AT P

. AN RS -
A N PO AR N ER PR S S S .

R T T N T R N SR A R S R G L L



. C.1.14  PSTCharCount -

— " S
+ BT
S e

Item Name: PSTCharCount
i Data Type: Integer
'i Item Size: 2 bytes
.‘,ﬂ
o
i Where written: i Where read:
X !
2 !
SrvInputQueue i SrvInputQueue
i MoveMsgtoNodeTTxDMA
]
i
_2 Description: PSTCharCount is a character count
» representing the size (in bytes) of an
< input request. This size includes
- the number of characters typed on the
3. keyboard as well as the size of the
: Transport Header which is appended
. to the front of the message prior
L4 to message movement into the TTxDMA
- . node queue. PSTCharCount (unlike
G NBTCharCount) may be an odd number.
9
.
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~. StartIdx
§-\,:: C . 1 . 1 5 t -
AT
SRR
; Item Name: Startldx
i;} Data Type: Integer
.fﬁ Item Size: 2 bytes
. Where written: i Where read:
SN |
350! SrvInputQueue i SrvInputQueue
) | EvalSOCInput
]
r:;:
:ﬂg Description: StartIdx is a temporary variable
529 used primarily to calculate,
- along with Stopldx, the
'~ size (character count) of the
o current input request from
o a terminal operator. It is set
fb’ equal to the current position
}% of the PST InChar 'get!' index
oo . and remains unchanged (while
) ) the 'get' index increments)
. throughout processing of the
s current request,
A
<)
N
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=
= C.1.16  Stopldx -
#
- Item Name: StopIdx
{
X2 Data Type: Integer
iﬁ Item Size: 2 bytes
25

Where written: ! Where read:
N !
5 !
" SrvInputQueue ! SrvInputQueue
- | EvalSOCInput
A ]

]

} Description: StopIdx is a temporary variable
= used primarily to calculate,
A along with Startldx, the

size (character count) of the
s current input request from
N a terminal operator. It is
- initially set equal to Startldx
and increments as each character

” . in InChar is scanned. When a

(}a carriage return is encountered
4 in InChar, StartIdx is subtracted
0 from StoplIdx to yield the number

of characters in the input string.
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C.1.17  IHT -

» 'l- 't. 'p‘ f‘

ELIN
4

2 . Item Name: THT
Data Type: structure

Item Size: 36 bytes

Where written: Where read:

MoveMsgtoNodeTTxDMA

N BldTransportHeader
- SrvNodeQueue

—— e — - ——

Description: The Transport Header Table ( THT )
is a 36 character structure used
y as a template to form the message
= Transport Header (para.
12 which is appended to the beginning
- of each DMA-bound input request.
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This section contains a brief PDL description of the

} processing logic in each LFEPLO.C functional module.

*Q Para Module Nbr Module Name Page

% c.2 Functional Modules (Heading) €-20
C.2.1 0 Main c-21

L. C.2.2 1 InitSystem C=22

8 c.2.3 1.1 InitPST c-23

‘] C.2.4 1.2 InitInterrupts C-21

b C.2.5 1.2.1 SOCInterruptServiceRoutine C-25
c.2.6 1.2.2 T1InterruptServiceRoutine C-27

= C.2.7 1.2.3 T2InterruptServiceRoutine  C-28

s c.2.8 1.2.4 T3InterruptServiceRoutine C-29

. C.2.9 1.2.5 T4InterruptServiceRoutine C=30

) C.2.10 1.2.6 T5InterruptServiceRoutine  C-31

- § C.2.11 1.2.7 T6InterruptServiceRoutine C=32

‘j; C.2.12 1.2.8 T7InterruptServiceRoutine C-33

1 c.2.13 1.2.9 DMAInterruptServiceRoutine C-34

* C.2.14 1.2.9.1 SetUpForInputDMA C-36

- C.2.15 2 PerfNormalActivities C-37

K C.2.16 2.1 SrvInputQueue Cc-38

2 C.2.17 2.1.1 EvalS0CInput C-40
c.2.18 2.1.2 MoveMsgtoNodeTTxDMA C-i1
c.2.19 2.1.2.1 BldTransportHeader C-42
c.2.20 2.2 SrvOutputQueue C=43

o c.2.21 2.3 SrvNodeQueue C-44

% c.2.22 2.3.1 TTxtoDMAOutput C=45

- c.2.23 2.3.2 DMAtoTTxOutput C-46

= C.2.24 3 TermSystem C-u7
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c.2.1 Main -

Called From: 'C' Shell

Modules Called: 1 InitSystem
2 PerfNormalActivities
3 TermSystem

Globals Read: N/A
Globals Written: N/A

PDL Description:

CALL InitSystem to initialize the system
CALL PerfNormalActivities to conduct normal activities

CALL TermSystem to effect an orderly return to RT11XM

Cc=21
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C.2.2 InitSystem -
Module Number: 1

{ | Called From: 0 Main

;g Modules Called: 1.1  InitPST
1.2 InitInterrupts

Globals Read: NBROFBUFFERS

NBROFPORTS

» NBT

Nt NODEBUFFERSIZE

o PST
o TERMBUFFERSIZE

4 Globals Written: DMABusyFlag

P FileOpenFlag

N NBT

-':‘-, PST

N

. PDL Description:

‘

)} set DMA Busy Flag = not busy status

3

4 ) if the accounting file can be opened

(jg set the File Open Flag = File is open

: else

) set the File Open Flag = File is not open
) display an error message to the SOC

A

N for all 9 entries in the Port Status Table

) initialize the 4 InChar indexes

- initialize the 4 OutChar indexes

; for both entries in the Node Buffer Table

1 initialize the 4 NodeChar indexes

. designate NBT entry 0 as "TTx"

- designate NBT entry 1 as "DMA"

) fetch the addrs of the Interrupt Service Routines
Y

3 CALL InitPST () ==~ to further initialize the PST

for all 9 I/0 ports

= CALL InitInterrupts () -~-- to activate interrupts
"
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c.2.3

init
init
init
init
init
init

InitPST -

Module Number: 1.1

Called From: 1 InitSystem
Modules Called: N/A

Globals Read: BLANKS

DMAINTVECTOR
DMAPORTADDR
FIRSTPORT
FIRSTVECTOR
NBROFPORTS
NBROFTERMINALS
PORTOFFSET
PST
SOCINTVECTOR
SOCPORTADDR
VECTOROFFSET

Globals Written: PST

D D T G D G P G G S D Gn SR R G D G ST D R S D G G P D s G D T S T G D E S D G I G G T SR e E G

PDL Description:

for all PST entries:

Terminal ID

Port Addr
Interrupt vector
Terminal Mode
Process ID
Process Name

c-23
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C.2.4 InitInterrupts -
o Module Number: 1.2
Called From: 1 InitSystem

Modules Called: N/A

Globals Read: DMA
DMACSR
PST

Globals Written: PST

PDL Description:
set new interrupt PSW mask = 340 (octal)

save current port interrupt PSW mask
save current port interrupt vector

set current port interrupt mask = new interrupt PSW mask
set current port interrupt vector = PST interrupt vector

Cc-24
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- C.2.5 S0CInt c ne - ‘
éﬁ §§g Module Number: 1.2.1
- Called From: hardware interrupt
' ( vector addr: 000060
ﬁ port addr: 777560 )
N\ Activated from: 1.2 InitInterrupts

- Modules Called: N/A
1 Globals Read: BACKSPACE
W CR
W CTRLC
* DEL

LF
% SPACE
X InChar
& YES
Globals Written: AbortFlag
: InChar
. PST
]
? G PDL Description:
; CALL entint to save machine registers
" move char from data port to InChar buffer
2 echo char to console screen
) if input char was a carriage return
4 echo a line feed to the console screen
2
‘j casentry -- input char
' case Control C (*C)
- set the system abort flag = YES
Q case Delete key
) if this is not the first char
decrement the InChar "put" index

- back-space the console cursor
R over-write console char with a space
N back-space the console cursor
: case default
7‘ increment the InChar "put" index
2 {5
: C-25
by
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if InChar "put" index exceeds buffer limit :
- decrement InChar "put" index
ASRR endcase

CALL retint to restore machine registers

C-26
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‘) C.2.6 I e c -
VI
SEEENE Module Number: 1.2.2
" Called From: hardware interrupt
;o ( vector addr: 000300
port addr: 776500 )
Activated from: 1.2 InitInterrupts
. Modules Called: N/A
]
N Globals Read: BACKSPACE
N : CR
o DEL
N LF
SPACE
InChar
PST
- Globals Written: InChar
- PST
3 PDL Description:
~

CALL entint to save machine registers

move char from data port to InChar buffer
‘ echo char to console screen

if char was a carriage return
echo a line feed to the console screen

A if char was the "delete" key

; if this is not the first char

- decrement the InChar "put" index

- back-space the console cursor

3 over-write console char with a space
back-space the console cursor

" else

: increment the InChar "put" index

v if InChar "put" index exceeds buffer limit

< decrement InChar "put® index

- CALL retint to restore machine registers

(s

o
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ﬂi C.2.7 TI2InterruptServiceRoutine -
OAENEN Module Number: 1.2.3
Lq Called From: hardware interrupt

xg ( vector addr: 000310
i port addr: 776510 )
o Activated from: 1.2 InitInterrupts
%3 Modules Called: N/A
¢§ Globals Read: BACKSPACE

-~ CR

. DEL

LF

" SPACE
o InChar
5 PST

-
SN Globals Written: InChar

J PST

T cceemeacecccecaccccccccmcmcca e e e e e e e e e e e m e e e —————————————
ix PDL Description:

) ‘ib CALL entint to save machine registers

L)

move char from data port to InChar buffer
echo char to console screen

=
‘.

\l
‘|
|§ if char was a carriage return
: echo a line feed to the console screen
X if char was the "delete" key
oo if this is not the first char
‘Z‘ decrement the InChar "put" index
. back-space the console cursor
Sy over-write console char with a space
" back-space the console cursor
- else
2 increment the InChar "put" index
- if InChar "put" index exceeds buffer limit
! decrement InChar "put" index
o CALL retint to restore machine registers
”
t ’ ,‘:%'.
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o c.2.8 InterruptServiceRoutine -
- : Module Number: 1.2.4
{
" Called From: hardware interrupt
- ( vector addr: 000320
- port addr: 776520 )
s Activated from: 1.2 InitInterrupts
% Modules Called: N/A
kS
N Globals Read: BACKSPACE
N CR
i DEL
LF
) SPACE
‘ InChar
28 PST
Pl
- Globals Written: InChar
PST

q\‘; --------------------------- S D P D G T G Ge D WP G b G D O G G @S Eb Gy G G ED G TR Y0 an S G e S
g PDL Description:

G CALL entint to save machine registers

move char from data port to InChar buffer
echo char to console screen

0
s Wt R

if char was a carriage return
echo a line feed to the console screen

if char was the "delete" key
N if this is not the first char
-~ decrement the InChar "put" index
back-space the console cursor
over-write console char with a space
back-space the console cursor

y else

; increment the InChar "put" index

X if InChar "put" index exceeds buffer limit
. decrement InChar "put" index

CALL retint to restore machine registers

al
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< c.2.9 T4InterruptServiceRoutine -
S
‘SM' Module Number: 1.2.5

{

o Called From: hardware interrupt

o ( vector addr: 000340
o port addr: 776540 )
> Activated from: 1.2 InitInterrupts
oo Modules Called: N/A

'!:q."

2V Globals Read: BACKSPACE

D CR

o DEL

LF

2% SPACE

9% InChar

>0 PST

L Globals Written: InChar

- PST

B e e e e e e
‘22 PDL Description:

B GE? CALL entint to save machine registers

B move char from data port to InChar buffer
-~ echo char to console screen

.fQ if char was a carriage return

- echo a line feed to the console screen
1;2 if char was the "delete" key

if this is not the first char
decrement the InChar "put" index
back-space the console cursor
over-write console char with a space
back-space the console cursor

NNNNS

::i else

o increment the InChar "put" index

~{ if InChar "put" index exceeds buffer limit
decrement InChar "put" index

;: CALL retint to restore machine registers

ﬁi
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X c.2.10 InterruptServic ine -
> -
N Module Number: 1.2.6
S_ Called From: hardware interrupt
. ( vector addr: 000350
- port  addr: 776550 )
ﬁj Activated from: 1.2 InitInterrupts
5N Modules Called: N/A
o
- Globals Read: BACKSPACE
‘v CR
. DEL
LF
5 SPACE
N InChar
v PST
-
. Globals Written: InChar
R PST
X PDL Description:
f ‘:P CALL entint to save machine registers
N move char from data port to InChar buffer
x echo char to console screen
~
- if char was a carriage return
" echo a line feed to the console screen
&5 if char was the "delete" key
- if this is not the first char

decrement the InChar "put" index
back-space the console cursor
)3 over-write console char with a space
i back-space the console cursor
else

increment the InChar "put" index
“ if InChar "put" index exceeds buffer limit
X decrement InChar "put" index

CALL retint to restore machine registers

‘J
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c.2.11 TéInterruptServiceRoutine -
e Module Number: 1.2.7

Called From: hardware interrupt

( vector addr: 000360

port addr: 776560 )

Activated from: 1.2 InitInterrupts
Modules Called: N/A
Globals Read: BACKSPACE

CR

DEL

LF

SPACE

InChar

PST
Globals Written: InChar

PST

PDL Desecription:
CALL entint to save machine registers

move char from data port to InChar buffer
echo char to console screen

if char was a carriage return
echo a line feed to the console screen

if char was the "delete" key
if this is not the first char
decrement the InChar "put" index
back-space the console cursor
over-write console char with a space
back-space the console cursor
else
increment the InChar "put" index
if InChar "put" index exceeds buffer limit
decrement InChar "put" index

CALL retint to restore machine registers
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2 C.2.12 IZInterruptServiceRoutipe -
)3 ~.
TSRS Module Number: 1.2.8

o Called From: hardware interrupt
( vector addr: 000370
port addr: 776570 )

Activated from: 1.2 InitInterrupts

> Modules Called: N/A
- Globals Read:  BACKSPACE
N CR
= DEL
LF

) SPACE

4 InChar

y PST

Globals Written: InChar

| PST

3 PDL Description:
L ‘:’ CALL entint to save machine registers
¥, move char from data port to InChar buffer
? echo char to console screen
i

]
» if char was a carriage return
echo a line feed to the console screen

) if char was the "delete™ key

- if this is not the first char

X decrement the InChar "put" index
¥ back-space the console cursor

: over-write console char with a space

back-space the console cursor

L else

increment the InChar "put" index
o if InChar "put" index exceeds buffer limit
decrement InChar "put" index

CALL retint to restore machine registers
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c.2.13 DMAInterruptServiceRoutine -
Module Number: 1.2.9

Called From: hardware interrupt
( vector addr: 000124
port addr: 772410 )

Activated from: 1.2 InitInterrupts
Modules Called: 1.2.9.1 SetUpForInputDMA

Globals Read: DMABAR
DMACSR
DMADBR
DMAGO
DMAIREQUEST
DMANEX
DMAODIRECTION
DMAOMODE
DMAWCR

DMABusyFlag
DMAwce

NBT
NodeChar

® Globals Written: DMABusyFlag
DMAwe
NBT
NodeChar

PDL Description:
CALL entint to save machine registers

if a2 non-existant memory address was referenced
display a SOC alert
else
if this is a host input request
CALL SetUpForInputDMA to service the request
else
casentry -~ status of the DMA~busy flag
case 1 (input, word mode expected)
fetch the word count from the host
if enough room in node queue for msg
set DMA-busy flag = 2
set DMA Base Addr register
set DMA Word Count register
set DMACSR Qutput Direction
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» set DMACSR Output Mode
_ set DMACSR Go bit

~e else

o T display SOC alert

1 case 2 (input, block mode expected)

case 3 (output, word mode in progress)

By Ay Ay Y,

case 4 (output, block mode in progress)

X

endcase

L

CALL retint to restore machine registers

[ a
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.
‘s

L)

€-35




¥’y a a 2'¥Y a

.

R
)

AR

......
................................

c.2.14 SetUpForInputDMA -

Module Number:
Called From:
Modules Called:
Globals Read:

Globals Written:

1.2.9.1

1.2.9 DMAInterruptServiceRoutine

N/A

DMA
DMABAR
DMACSR
DMAIMODE
DMAOMODE
DMAWCR

DMABusyFlag
DMAwe
InChar

PST

DMABusyFlag
PST

PDL Description:

set DMA-busy flag
set up DMA Base address register

if DMA request is for "word"™ mode
set DMA output mode to "word"™ mode

= input (word mode) expected

set DMA word count = 1

else

set DMA output mode to "block" mode
set DMA word count = requested word count
set DMA-busy flag = input (block mode) expected
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o0 G;l Module Number: 2
o Called From: 0 Main

:. Modules Called: 2.1 SrvInputQueue
el 2.2  SrvOutputQueue
"4 2.3 SrvNodeQueue

Globals Read: AbortFlag

! NBROFBUFFERS
&N NBROFPORTS
5 NBT
NO
PST
W Globals Written: NBT
£ PST
o PDL Description:
\h
0 display "FEP Activated" console alert
NN display activation time
bl
cib while the abort flag remains cleared
& for all Input Queues
¥ if input chars are queued
) CALL SrvInputQueue
y else
% re-initialize pointers

for all Output Queues
if output chars are queued
CALL SrvOutputQueue
else
re-initialize pointers

VA L
‘”a".' o2 o7

o for all Node Queues

e if node chars are queued
o CALL SrvNodeQueue

= else

- re-initialize pointers
()

5‘ H

ah -

A
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€C.2.16  SrvInputQueue -

Module Number:

AN
J.A

Al

Called From: PerfNormalActivities

2
2
Modules Called: 2
2
c

)
ad 1.1 EvalSOCInput
>, .1.2 MoveMsgtoNodeTTxDMA
Globals Read: R
DMA
5 DMATTx
" GoDMAFlag
:;'. InChar
> NBT
NBTCharCount
) PST
ﬁ PSTCharCount
) SoC
v StartIdx
A Stopldx
THTSIZE
” TTxDMA
v,
2 Globals Written: GoDMAFlag
Y NBT
- NBTCharCount
G PST
PSTCharCount
j Startldx
) Stopldx
PDL Description:
) while Input Queue chars remain to be evaluated

if the char is a carriage return or
the terminal is in character mode

if input was from SOC
CALL EvalSOCInput
set node index for outbound DMA
else
if input was from DMA
set node index for inbound DMA
else

PRI LPAT AR

4 set node index for outbound DMA
% if chars are to be moved to DMA
¥ calculate the message size (chars)
<A ™
AL
: c-38
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if the message size is an odd number
add one for DMA even word transfer

if enough space exists in node queue
CALL MoveMsgtoNodeTTxDMA

else
display SOC alert of node saturation
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) a™ .
- e Module Number: 2.1.1
: Called From: 2.1  SrvInputQueue
< Modules Called: N/A
.1'
Y Globals Read: GoDMAFlag
InChar
¥ NBT
“ NO
R PST
2
rd StartIdx
Stopldx
- YES
wd
W Globals Written: GoDMAFlag
B PST
W
PDL Description:
Assume no DMA output is to occur
if input request is to display the PST
G CALL DispPST
Y else
N if input request is to display the NBT
@ CALL DispNBT
3 else
-~ if input request is to display time
‘ CALL DispTime
o else
& set DMA-output-~is-to-occur flag
?i if this current input is a display request
adjust fetch pointer for next input message
2
]
b
N

s e
L W St W W R
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c.2.18 MoveMsgtoNodeTTxDMA -
Module Number: 2.1.2

Called From: 2.1 SrvInputQueue
Modules Called: 2.1.2.1 BldTransportHeader

Globals Read: InChar

LF

NBT

NodeChar
PSTCharCount
PST

THT

THTSIZE

Globals Written: NBT
NodeChar
PST

- D D D G SR G S D G G D A D s G G T T G D I G G G i D S S N GED S S Gxy R W e P R G D G G S G G G5 SR EE I G R WD R S e @

PDL Description:
CALL BldTransportHeader for current message
for each character to be moved to the node queue
if the char is part of the Transport Header
move char from THT to NodeChar
else
move char from InChar to NodeChar

if message contains an odd number of chars
pad message with a trailing line feed char

CALL GatherStats to trap node queue accounting data
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C.2.19 BldTransportHeader -

Module Number: 2.1.2.1

Called From: 2.1.2 MoveMsgtoNodeTTxDMA

Modules Called: N/A

Globals Read: MAXMSGSEQNBR
ZBTERM
ZERO5
LastMsgSeqNbr
NBT
NBTCharCount
PST

Globals Written: LastMsgSeqNbr
THT

PDL Description:

copy process name from PST to THT
copy process ID from PST to THT
copy terminal ID from PST to THT
copy terminal mode from PST to THT

increment the last message sequence number

if last message sequence number exceeds limit
set last message sequence number = 0

copy ascii value of last message sequence number to THT
set the multi-packet flag in THT = character 'N!

copy ascii value of msg char count to THT

set multi-packet sequence number in THT = '00°!

copy originating node name from NBT to THT

copy a zero byte delimiter to THT

C-lh2
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c.2.20 0 u ue -

o ':? Module Number: 2.2

o~ Called From: 2 PerfNormalActivities
e Modules Called: N/A

e Globals Read: OutChar
PST

Globals Written: PST

PDL Description
if output port is ready for next character

- move next char from OutChar to output data port
increment the OutChar "get" pointer

if the OutChar "get" pointer exceeds high limit
set OutChar "get" pointer to low limit

> 1 ﬂ fs%:'
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c.2.21 SrvNodeQueue -
Module Number: 2.3

Called From: 2 PerfNormalActivities

Modules Called: 2.3.1 TTxToDMAQutput
2.3.2 DMAtoTTxOutput

Globals Read: NBROFPORTS
TTxDMA

NBT
NBTCharCount
NodeChar

PST

Globals Written: EndIdx
NBT

NBTCharCount

PDL Description:

While chars remain in the queue
Do for each entry (port) in the PST
CALL strcompare to match terminal ID with msg header
if the msg in the queue is for this terminal user
get msg char count from Transport header
convert this ascii count to an integer
set EndIdx = NodeChar index of the last char
if the queue being serviced is TTx-to-DMA
CALL TTxtoDMAOutput to request DMA transfer
else
CALL DMAtoTTxOutput to move msg to OutChar

if strcompare could find no matching terminal ID
display an error alert upon the SOC terminal screen
display the msg contents on the SOC terminal screen
flush entire node buffer by resetting the 'get' ptr

C-44




7 HD-A138 152 DEYELOPMENT OF A COMMUNICATIONS FRONT END PROCESSOR
(FEP) FOR THE ¥AX-11/ . (U) AIR FORCE INST OF TECH

WRIGHT-PATTERSON AFB _OH SCHOOL OF ENGI.. A F HWASTY
UNCLASSIFIED DEC 83 AFIT/GCS/EE/83D-13 F/G 1772

w
~
L7}

=
=

o
F4
=




-
0 —
2._ : O <«
= o 5 8
o o — Z 8
SEEE] © 3
<t z £
OF of op 23 — 2
i EFEFEFTTR S5
) = 2 2
O @
— — (=] F
o el | E
— 4
= = m g
—
-
i e AR AN AT . Gt ARy ORIy RENRARAN ¢
AREERS SRR  piaer - TRheman| SRR - SRrUul] RNl -




..........

r R R IR AR AT AN AL A A SRS RIEAEN I AN P AL A A A At St et it A A R 3 i R R R

I

o C.2.22  TITxtoDM

{~$' ol e [o] U -

AR Module Number:  2.3.1

kh“ Called From: 2.3 SrvNodeQueue
B Modules Called: N/A

T
A Globals Read: DMACSR
DMAREADY

s DMAODIRECTION

S DMAOMODE

'.‘«L::; TTxDMA

oY DMABusyFlag

EndIdx

-3 NBT

iﬁ NodeChar

4_\:.

g Globals Written: DMACSR

% DMADBR

7 DMAODIRECTION
Ko DMAOMODE

o DMABusyFlag

S NBT

..\ -
2N PDL Description:

:E: if 'word! mode input is expected and DMA is not busy
N set DMA Base Addr register = block word count
. set DMA Output mode = 'word' mode

! set DMA Output direction = LSI is transmitter
ok set DMA-busy flag = Output 'word' mode in progress
2 else

ti display an error alert msg upon the SOC terminal screen
o

N
b CALL GatherStats to trap node queue accounting data
\n'

,ﬁa
AN
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€c.2.23
Module Number:
Called From:
Modules Called:
Globals Read:

..............

DMAtoTTxOutput -

2.3.2

2.3 SrvNodeQueue
N/A

DMATTx

EndIdx
NBT
NodeChar
PST

Globals Written: NBT
OutChar
PST

PDL Description:

CALL GatherStats to trap node queue accounting data

while NodeChar characters remain for this message
if OutChar 'putt' ‘ndex < high limit
copy char from NodeChar to OutChar
increment NodeChar pointer to next char
increment OutChar pointer for next char
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C.2.24 TermSystem -

Module Number: 3

Called From: 0 Main

Modules Called: N/A

Globals Read: NBROFPORTS
PST

Globals Written: N/A

PDL Description:

Do for all PST entries
restore original interrupt PWS mask
restore original interrupt vector address
display a SOC alert that the FEP system has been aborted
CALL DispTime to display the time of abort
CALL DispElapsedTime to display the duration of FEP processing

CALL fclose to close the accounting file
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APPENDIX D

LSI FEP SOURCE CODE LISTINGS

These source listings represent the latest versions

of the LSI FEP programs LFEPLO.C and LFEPHI.C. Modules

forming LFEPLO.C are identified by module numbers containing

purely numerical terms. Modules forming LFEPHI.C are

identified by prefixing the numerical part with the 'X!

character representing extended memory mapping.
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Para Module Nbr Module Name Page
D.1 "LFEPLO.C" Program Modules (header) D- 3
D.1.1 0 Main D- 8
D.1.2 1 InitSystem D- 9
D.1.3 1.1 InitPST D=11
D.1.4 1.2 InitInterrupts D=-13
D.1.5 2 PerfNormalActivities D-14
D.1.6 2.1 SrvInputQueue D-16
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D.2.2 X.2 DispNBT D-55
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D.2.6 X.6 DispElapsedTime D-62
D.2.7 X.7 GatherStats D-63
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o1 LFEPLO.C Program modules

 E X XXX IXXXZEZ:IXXXZRARSXXZZSRRSRR 2222222222222 22222222 R R R L)

TITLE: LSI FEP Low Memory 'C! Program
FILENAME: LFEPLO.C

DATE: 3 Nov 83

VERSION: Al

OWNER: Capt Allan F. Masty
COMPUTER SYSTEM: LSI-11/23

OPERATING SYSTEM: RT11XM

LANGUAGE: Telecon 'C!

CONTENTS: Main

InitSystem

InitPST

InitInterrupts
SOCInterruptServiceRoutine
T1InterruptServiceRoutine
T2InterruptServiceRoutine
T3InterruptServiceRoutine
ThInterruptServiceRoutine
T5InterruptServiceRoutine
T6InterruptServiceRoutine
T7TInterruptServiceRoutine
DMAInterruptServiceRoutine
SetUpForInputDMA
PerfNormalActivities
SrvInputQueue
EvalSOCInput
MoveMsgtoNodeTTxDMA
BldTransportHeader
SrvOutputQueue
SrvNodeQueue
TTxtoDMAOutput
DMAtoTTxOutput

TermSystem

o s o
DRV =
e o o

WOWWOWOO~JOANEWN =

*
-t

*
NN =
N

WLWLW N = v
N -

WRNHDMNNMNDMNDMNDMNDMNN ~ bbbt b b s O

FUNCTION: Performs as a Communications Front End
Processor (FEP) for a DEC VAX-11/780.

Functions as a Terminal Concentrator in
assembling and routing the keyboard and
screen traffic for 8 (expandable to 16)
DEC VT-100 terminals. .
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/‘ ® 5 880090 0000000 000 GLOBALS
#define BACKSPACE '\010°
#define CR '\015"
#define CTRLC '\003?
#define DEL "\17T*
#define FIRSTPORT 0176500
#define FIRSTVECTOR 0000300
#define LF '\012*
#define MAXMSGSEQNBR 0007777
#define NO 0
#define PORTOFFSET 8
#define SOCPORTADDR
f#define SOCINTVECTOR 0000060
#define SPACE "\040'°
f#define TERMBUFFERSIZE 200
#define VECTOROFFSET 8
#define YES 1
extern char InChar 1,
OutChar I[1 ,
NodeChar [] ;
#include "l1fepio.h"
extern int fopen () ;
int AbortFlag = NO ,
DMABusyFlag ,
DMAwc ,
EndIdx ,
FileOpenFlag ,
GoDMAFlag ,
Startldx ,
StopIdx ,
LastMsgSeqNbr ,
NBTCharCount ,
PSTCharCount ;
FILE %fp ,
®fopen () ;
D=4

® ® & 6 00 8 0 ¢ ¢ S0P e O OO TS '/

/* Back-space char code
/®* Carriage Return char

/% °C (

control=C ) char

/% "DELETE"™ key char code
/* First LSI-11 port addr
/% First int,., vector addr

/* Line

Feed character

/* Largest message number
/% BOOLEAN variable

/* 8 word port seperations
0177560 /*% I/0 port addr for SOC

%/

/% SOC Interrupt vector addr#/
/* Space character code

/* Terminal buffer size

/% Interrupt vector spacing
/®* BOOLEAN variable

/* Terminal

Input Buffers

/% Terminal Output Buffers

/% Node=to=Node

VA

Buffers

Standard IO routines

*/
*y
*/
*/
*y
*y
%/

®/

/* BOOLEAN for aborting FEP %/

/* Flag
0 = Not
1 = DMA
2 = DMA
3 = DMA
4 = DMA

set when the DMA
interface is busy :

Busy

word input expected
block input expected
word output pending
block output pending

/* DMA word count (block)
/* Used in servicing NodeChar
/®* Status of file LSIFEP.DAT
/% BOOLEAN to send DMA output

/% Used
/% Used

in servicing InChar
in servicing InChar

/% Increments for each new msg
/% Count of chars in NBT msg
/% Count of chars in PST msg

*/

A
A
*/
*/

*/
*/
®/
*/




/* . Port Status ( PS ) Table defines & declarations . . %/

#define NBROFPORTS 9 /% NBROFTERMINALS +SOC +DMA #/
#define NBROFTERMINALS 7 /% # of VT-100 terminals L4
#define socC 0 /* System Operator's Console¥®/
#define T1 1 /% VT=-100 unit #1 ®/
#define T2 2 /% VT-100 unit #2 ®/
#define T3 3 /% VT-100 unit #3 *®/
f#define T4 y /% VT=-100 unit #4 &/
#define TS 5 /% VT-100 unit #5 %/
f#define T6 6 /% VT-100 unit #6 ®/
f#define T7 7 /% VT=-100 unit #7 ®/
fdefine DMA 8 /* Direct Memory Access ®/
struct PortStatusDataRecord

char TID [4] ; /% VT-100 Terminal ID %/

char TermMode ; /%* line or character mode */

int InLowIdx H /% Input buffer pointers L4

int InPutlIdx H

int InGetIdx ;

int InHighIdx ;

int OutLowIdx /% Output buffer pointers #*/

int QutPutlIdx

int OutGetIdx ;

int OutHighIdx ;

int #RcvStatAddr ; /* receive port status addr %/

int #RcvDataAddr ; /% receive port data addr ®/

int #TxmStatAddr ; /% transmit port status addr*/

int #TxmDataAddr ; /* transmit port data addr #/

int ®IntVectAddr ; /% receive port int, addr *®/

int IntRoutineAddr ; /* Interrupt service routine¥/

int StorIntVect

%nt StorPSW H
PST [ NBROFPORTS ] ; /% I/0 Port Status Table ( PST ) #/
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/% |, index DEFINES for node = to = node buffers . . . *®/
: #define TTxDMA 0O /* TTx to DMA buffer ®/
Y #define DMATTx 1 /% DMA to TTx buffer L4
- /® e « « Mmisc defines for Node Buffer table . 74
. #define NBROFBUFFERS 2 /% Number of Node buffers %/
5 #define NODEBUFFERSIZE 2000 /* # of chars in each buffer#*/
; /* e « o« Node Buffer Table declaration B 74
struct NodeBufferRecord
)
3 char OrgNode [4] ;
» int LowIdx
- int PutIdx ;
N int GetIdx ;
int HighIdx ;
! }
% NBT [ NBROFBUFFERS ] ; /®* Node Buffer Table ( NBT ) #/
: 0 struct ?ngransportLayerHeader
4 char TID [31 ;
9 char Mode ;
3 char MsgSeqNbr [4] ;
N char MsgCharCnt [4] ;
I ihar OrgNode [3] ;
. THT ; /% Transport Header Table ( THT ) #/
f f#define THTSIZE sizeof ( THT )
2 By
Rt
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N
T
> ‘ Tt /* Y . . - Defines fOl" DMA COl‘)tl"Ol . Y . . */
Qﬁ #define DMAINTVECTOR 0000124 /% DMA interrupt vector L4
Lot #define DMAPORTADDR 0172410 /* DMA start port address 4
e #define DMAWCR 0172410 /* DMA Word Count Register ¥/
- #define DMABAR 0172412 /* DMA Bus Address Register %/
i #define DMACSR 0172414 /% DMA Control/Status Reg ®/
v #define DMADBR 0172416 /* DMA Data Buffer Register #/
2 /* ... the following define bit settings in DMACSR .... */
o #define DMAGO 0000001 /% bit 0 */
#define DMAOMODE 0000002 /* bit 1 %/
oy #define DMAODIRECTION 0000004 /% pit 2 %*/
T #define DMAOREQUEST 0000010 /* bit 3 #*/
~h /% bit U4 not used ¥/
o /* bit 5 not used */
Pap #define DMAIE 0000100 /% bit 6 */
; #define DMAREADY 0000200 /* bit T ¥/
: #define DMACYCLE 0000400 /* bit 8 #*/
_} fdefine DMAIMODE 0001000 /% pit 9 */
o #define DMAIDIRECTION 0002000 /% bit 10 */
L3 #define DMAIREQUEST 0004000 /* bit 11 */
o /% bit 12 not used */
® /% bit 13 not used ¥/
W f#define DMANEX 0040000 /* bit 14 */
.. #define DMAERROR 0100000 /% bit 15 %/
:é
X]
%
-
>
5
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. D.1.1 Main

- o JERE RN R R R R RN R RN NN RN NN REE NN RN RN R R RN R NN RN RN R NN

4 S * *

i ® MODULE NUMBER / NAME: 0 - Main *

e % #

S * DATE: 3 Nov 83 *

& i VERSION: A1 ®

s ® FUNCTION: Top level module for "LFEPLO.C" ¥
® INPUTS: NONE *

x # OUTPUTS: NONE *

¥ bd GLOBAL VARIABLES USED: NONE *

0 bl GLOBAL VARIABLES CHANGED: NONE ®

! * GLOBAL TABLES USED: NONE *

S * GLOBAL TABLES CHANGED: NONE *
® FILES READ: NONE *

- * FILES WRITTEN: NONE *

N ¥ MODULES CALLED: 1 - InitSystem *

~ * 2 - PerfNormalAcivities *

N ' 3 - TermSystem *

~ ® CALLING MODULES: NONE *

, » *

. * AUTHOR: Capt Allan F. Masty, GCS-83D *

) * HISTORY: VSN A1 - 3 November 1983 :

" %

. R R RN N RN R RN RN R AR RN RN RN RN RN RN AR RN NN/

| G Main ()

% {

. InitSystem () ; /%* First-time processing %/

PerfNormalActivities () ; /®* Synchronous processing */

\

N TermSystem () ; /* Clean-up routines */

~

S exit (0); /% return to RT-11 monitor #/

» }

.

.

~

-

Cd

’

’

. }‘C,‘

A D-8

l




]

D.1.2

InitSystem

(23 XXX XXZXXE22XX2X2XX2Z22X2 2224
MODULE NUMBER / NAME:
DATE:
VERSION:
FUNCTION:
INPUTS:
OUTPUTS:

GLOBAL VARIABLES USED:
GLOBAL VARIABLES CHANGED:

GLOBAL TABLES CHANGED:
FILES READ:

FILES WRITTEN:

MODULES CALLED:
CALLING MODULES:

AUTHOR:

/
*
*
*
#
#
#
»
#
*
*
*
#
: GLOBAL TABLES USED:
*
»
*
*
*
*
*
*
*
: HISTORY:
*

2222222 2X2XX2E22 2222222222222 2 )

Init?ystem @]
int i;

DMABusyFlag = 0 /%

FileOpenFlag = Yés H
if ({( fp = fopen ( "LSIFEP,.

FileOpenFlag = NO ;
printf ("\n LSIFEP.DAT ¢

}
for g i = 0; i < NBROFPORTS;
PST [i].InLowIdx =i #®
PST [i]).InPutldx = PST
PST (i].InGetIdx = PST
PST [i]l.InHighIdx = PST
PST [i].0utLowIdx = i *
PST [1i].0utPutIdx = PST
D=9
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1 = InitSystem
3 Nov 83
A1

Initializes data base and opens
accounting file "LSIFEP.DAT",
NONE

NCNE

NONE

DMABusyFlag

FileOpenFlag

NBT
PST
NBT
PST
NONE
NONE
1.1 =
1.2 =
0 -

InitPST
InitInterrupts
Main

Capt Allan F. Masty, GCS-83D
VSN A1 - 3 November 1983
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/* Loop control variable ¥/

Input word [mode] expected ¥/

DAT", "w" ) ) == NULL )

annot be opened. \n" ) ;

ies )

TERMBUFFERSIZE ;
[i].InLowIdx ;
[i].InLowIdx :
[i].InLowIdx+TERMBUFFERSIZE=-1;
TERMBUFFERSIZE ;
[i].OutLowIdx ;
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et et e T

" T M . e . - . Y Y Y - Ky s -\ T - e \
. >, Iy A e e e e T N LT i
PR A S A S SR W S R A R R O S S S L Y AR, SR LR WAL S NS



PST [i].OutGetIdx = PST [i].OutLowIdx ;
o ?ST [i].0utHighIdx = PST [i].OutLowIdx+TERMBUFFERSIZE-1;

for E i = 0; i < NBROFBUFFERS; i++ )
NBT [i].LowIdx
NBT [i].PutIdx
NBT [i].GetIdx
?BT [1].HighIdx

strepy ( NBT [ TTxDMA ].OrgNode, "TTx" )
strepy ( NBT [ DMATTx ].OrgNode, "DMA" )

o
(Y

Yy

i * NODEBUFFERSIZE ;

NBT [i].LowIdx ;

NBT [i].LowIdx ;

NBT [i].LowIdx+NODEBUFFERSIZE~1;

St et

". ,. ‘.I "A."A._L LR

PST [SOC].IntRoutineAddr
PST [ T1]l.IntRoutineAddr
y PST [ T2].IntRoutineAddr
v PST [ T3].IntRoutineAddr
3 PST [ T4].IntRoutineAddr
2, PST E T5].IntRoutineAddr

{

(

SOCInterruptServiceRoutine
T1InterruptServiceRoutine
T2InterruptServiceRoutine
T3InterruptServiceRoutine
T4InterruptServiceRoutine
T5InterruptServiceRoutine
TéInterruptServiceRoutine
T7InterruptServiceRoutine

DMAInterruptServiceRoutine

s L
PLIRA

PST T6].IntRoutineAddr
o PST T7].IntRoutineAddr
4 PST [DMA]).IntRoutineAddr

WO WE WE W W W we we ws

o InitPST () ; /* Initialize Port Status Table */
G InitInterrupts () ; /% Turn on all interrupts %/

return ;

}




............

T R I T TR AT TR R AT A TAT T T T TR T T T T e L L L S R ST AR Y

D.1.3 InitPST

R /AR AR RN RN R RN RN RN RN RN AR R R R RN AR RN NN AR AR RN RRRNNN
: A %
# MODULE NUMBER / NAME: 1.1 - InitPST :
*
* DATE: 3 Nov 83 *
*#  VERSION: A1 *
* FUNCTION: Completes PST initialization ot
*#  INPUTS: NONE *
*#  QUTPUTS: NONE »
*#  GLOBAL VARIABLES USED: NONE »
*  GLOBAL VARIABLES CHANGED: NONE *
*  GLOBAL TABLES USED: PST *
*  GLOBAL TABLES CHANGED: PST *
*  FILES READ: NONE *
*  FILES WRITTEN: NONE *
*  MODULES CALLED: NONE *
bad CALLING MODULES: 1 = InitSystem :
»
* AUTHOR: Capt Allan F. Masty, GCS-83D L
* HISTORY: VSN A1 - 3 November 1983 ®
» *
AR RN R R RN RN RN RN RN RN RN AR RN RN AR RRRRRNRER)
InitPST ( )
@ {
int i /% index into PST #/
strepy ( PST [SOC].TID, "soC" ) ;
strepy ( PST [ T1].TID, "T.1" ) ;
strepy ( PST [ T2].TID, "T.2" ) ;
strepy ( PST [ T31.TID, "T.3" ) ;
strepy ( PST [ T4).TID, "T.4" ) ; !
strepy ( PST [ TS5]1.TID, "T.5" ) ;
strepy ( PST [ T6].TID, "T.6" ) ;
strepy ( PST [ T71.TID, "T.7" ) ;
strepy ( PST [DMA].TID, "DMA" ) ;
for E i=1;1<=3; 14+ ) /® VT-100's only #/

PST [i].RevStatAddr FIRSTPORT +
( (i=1) * PORTOFFSET ) ’
FIRSTVECTOR +

( (i=-1) ® VECTOROFFSET ) ;

PST [i].IntVectAddr

}

for ( 1 = 4; 1 <= NBROFTERMINALS; i++ )
{
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Lol PST [i].RevStatAddr = FIRSTPORT +
FY ( i ®* PORTOFFSET ) ;
RN PST [i).IntVectAddr = FIRSTVECTOR +
: ( i ®* VECTOROFFSET ) ;
}
- PST [SOC].RevStatAddr = SOCPORTADDR ;
- PST [SOC].IntVectAddr = SOCINTVECTOR ;
& PST [DMA].RcvStatAddr = DMAPORTADDR ;
PST [DMA].IntVectAddr = DMAINTVECTOR ;
- for ( i = 0 ; i < NBROFPORTS; i++ )
- { /* all table entries #/
o PST [i].TermMode = 'L! ;
- PST [i].RevDataAddr = PST [i].RevStatAddr + 2 ;
PST [i].TxmStatAddr = PST [i].RcvStatAddr + 4 ;
- PST [i].TxmDataAddr = PST [i]l.RevStatAddr + 6 ;
P }
o return ;
3
)
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; D.1.4 InitInterrupts
3 - JRRERE R AR RN RN E RN R RN RN RN RN RN RN RN R TR RRN TR RN RN RN ERNN
r ) *
(
~ * MODULE NUMBER / NAME: 1.2 = InitInterrupts *
. * *
- *  DATE: 3 Nov 83 *
- * VERSION: A1 ®
% * FUNCTION: Enables interrupts for all PST ¥
o entries *
. #  INPUTS: NONE *
N *  OUTPUTS: NONE »
-. * GLOBAL VARIABLES USED: NONE ®
N * GLOBAL VARIABLES CHANGED: NONE ®
. * GLOBAL TABLES USED: PST *
® GLOBAL TABLES CHANGED: PST ®
by * FILES READ: NONE ®
i * FILES WRITTEN: NONE ®
R * MODULES CALLED: NONE ®
Y : CALLING MODULES: 1 - InitSystem *
: *
) * AUTHOR: Capt Allan F. Masty, GCS-83D bd
* HISTORY: VSN A1 - 3 November 1983 *
* *
,E R AR R RN R RN RN RN RN R RN RN NN RN RN RR AR R RN RN RRRRRANN
§
.v
: G InitInterrupts ( )
- {
2 int i, /%* index into PST %/
! PSW , /®* Processor Status Word #/
N *temp ; /% temporary pointer #/
o PSW = 0000340 ; /% Interrupt vector PSW #/
N for g i = 0; i < NBROFPORTS; i++ )
L%
o temp = PST [i].IntVectAddr ;
|
PST [i].StorIntVect = %( temp ) ; i
) PST [1i].StorPsSw = #(temp+1) :
- *PST [i].IntVectAddr = PST [i].IntRoutineAddr ; :
) % (temp+1) = PSW ; :
2 if ( 1 < DMA ) /% enable interrupts %/ |
. #PST [i].RevStatAddr = 0100 ;
- else
- *DMACSR = 0100 ;
'l
< return
?
.
P
D-13
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D.1.5 PerfNormalActivities

_v_:'j /*l"l***i***l***i*i'l'***'l*'l'!*********!ll***l********‘l**************
T * ®
: MODULE NUMBER / NAME: 2 - PerfNormalActivities :
* DATE: 3 Nov 83 ®
bd VERSION: Al *
® FUNCTION: Loops and scans node queues hd
* InChar, OutChar, and NodeChar *
» for message traffic to move. *
* INPUTS: NONE *
® OUTPUTS: NONE b
* GLOBAL VARIABLES USED: AbortFlag *
* GLOBAL VARIABLES CHANGED: NONE ®
* GLOBAL TABLES USED: NBT ®
* PST *
® GLOBAL TABLES CHANGED: NBT *
* PST *
* FILES READ: NONE ®
# FILES WRITTEN: NONE ®
* MODULES CALLED: X.4 - DispTime ®
* 2.1 = SrvInputQueue *
* 2,2 = SrvOutputQueue *
* 2.3 -~ SrvNodeQueue ]
: CALLING MODULES: 0 - Main :
@ *  AUTHOR: Capt Allan F. Masty, GCS-83D  *
: HISTORY: VSN A1 - 3 November 1983 :
e T T T T YT TT TR TRTIT LI 22 2222 22 2 AL LA AL LALL AN

PerfNormalActivities ()
{
int i /* index into PST or NBT %/
printf ("\n++++++++ FEP Activated at ")
DispTime () ;
whilf ( AbortFlag == NO )
for ( i = NBROFPORTS - 1; i >= 03 j==)
{ /% Input queue scans %/
if ( PST [i].InPutlIdx != PST [il.InGetIdx )
SrvInputQueue ( i ) ;
else

{
PST[i].InPutIdx = PST[il.InLowIdx ;

N
)
D=-14
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PST[i].InGetIdx
}

}

for ( i

NBROFPORTS - 1}*
if ( PST [i].OutPutldx
SrvOutputQueue ( i
else
{
PST{1i].0utPutldx
?ST[i].OutGetIdx

}

for E i = NBROFBUFFERS -1;
/
if ( NBT [i].Putldx !=
SrvNodeQueue ( i )
else
{
NBT [i].Putldx =
?BT [i].GetIdx =
}
}
return ;

NBT [i].LowIdx
NBT [i].LowIdx

PST[i].InLowIdx

i >=0; i==)
Output queue scans #/
1= PST [i].0utGetIdx )
)

PST[i].OutLowldx
PST[i].OutLowIdx

i >=0; i=-=)
Node buffer scans
NBT [i].GetIdx )

%/
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D.1.6 SrvInputQueue

JRERRRRERRRRRRRRRERRRBRRRRRERRRERERRERRRERRERERRRRARREERRERERRNEN

*
MODULE NUMBER / NAME:

DATE:
VERSION:
FUNCTION:
INPUTS:

OUTPUTS:
GLOBAL VARIABLES USED:

GLOBAL VARIABLES CHANGED:

GLOBAL TABLES USED:

GLOBAL TABLES CHANGED:
FILES READ:

FILES WRITTEN:

MODULES CALLED:
CALLING MODULES:

AUTHOR:
HISTQRY:

*
%
»
*
»
»
*
*
*
»
*
*
#
»
*
*
*
*
*
»
#*
*
*
*
»
»
*
»
»
*
*
»
*
SrvInputQueue ( i )

int i;
{
Stopldx = Startldx =

whil? (

if ( ( InChar [StopIdx++] == CR)
(PST [i].TermMode =

{

if (i == sS0OC )

2222222222222 2SS RS RAXS2 22222222 R X222 XX

2.1 = SrvInputQueue

3 Nov 83

A1

Moves character data from queue
InChar to queue NodeChar.
i = index into PST

NONE

GoDMAF1lag

NBTCharCount

PSTCharCount

Startldx

StopIdx

GoDMAF1lag

NBTCharCount

PSTCharCount

Startldx

StoplIdx

Inchar

NBT

PST

NBT

PST

NONE

NONE

2.1.1 « EvalSOCInput
2.1.2 - MoveMsgtoNodeTTxDMA
2 = PerfNormalActivities

Capt Allan F. Masty, GCS-83D
VSN A1 - 3 November 1983
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/% index into the PST %/

PST [i].InGetIdx ;
StopIdx < PST [i].InPutlIdx )

ICI) )
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EvalSOCInput () ;
T if ({GoDMAFlag++ ) /% chars to be moved to DMA */

PSTCharCount = Stopldx - Startldx + THTSIZE ;
NBTCharCount = PSTCharCount ;

if ( NBTCharCount & 0000001 )
++NBTCharCount ;

if (( NBT [TTxDMA].PutIdx + NBTCharCount )
<= NBT [TTxDMA].HighIdx )
MoveMsgtoNodeTTxDMA ( 1 ) ;
else
printf ("\n Node %s saturated.\n",
NBT [TTxDMA].OrgNode ) ;

} /% end of "if" processing */

} /% end of "while" loop %/
return ;

D=-17




- D.1.7 EvalSOCInput
i SRR BB RN R ERRE RN RN R RN R RN RN RN R RN R RN RN RN R RN RN NN RN NN R NNN
L * *
‘_ ® MODULE NUMBER / NAME: 2.1.1 - EvalSOCInput ¥
- » *
A
Dy ] DATE: 3 Nov 83 *
1s » VERSION: A1 *
N & FUNCTION: Displays system status data on #
- * System Operator's Console (SOC) #

# request. *
N ® INPUTS: NONE ®
e ¥ QUTPUTS: NONE *
N b GLOBAL VARIABLES USED: GoDMAFlag %
T ® StartIdx *
' * StoplIdx *
’ * GLOBAL VARIABLES CHANGED: GoDMAFlag b
> *® GLOBAL TABLES USED: InChar *
g ® NBT ¥
. * PST *
o bd GLOBAL TABLES CHANGED: PST *
B bd FILES READ: NONE b
‘- » FILES WRITTEN: NONE ¥
.. hd MODULES CALLED: X.1 - DispPST *
»~ * X.2 - DispNBT ¥
“ * X.4 - DispTime *
< (]P % CALLING MODULES: 2.1 <« SrvInputQueue :
L
&) * AUTHOR: Capt Allan F. Masty, GCS-83D *
N : HISTORY: VSN A1 - 3 November 1983 :
]
= AR AR R RN R RN R R RN RN RN RN RN R AR AR R RN RN R RN RN NRRRE

EvalSOCInput ()
% char P ;
3 int z;

GoDMAFlag = NO ; /* assume local SOC processing %/

N4
32 P = &( InChar [StartIdx]l ) ;
¢
% if ( strcompare ("pst", p, 3) == 3 )
‘ DispPST ( &PST ) ;
N else
" if ( strcompare ("nbt", p, 3) == 3 )
- DispNBT ( &NBT ) ;
. else
e, if ( strcompare ("time", p, 4) == 4 )
—" {

D-18




printf ("\nTime = ") ;
DispTime () ;
. ?rintf ("\n") ;

else /% set up for DMA transfer %/
GoDMAFlag = YES ;

if ( GoDMAFlag == NO )
PST [SOC].InGetIdx = Stopldx ;

return ;

}
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D.1.8 MoveMsgtoNodeTTxDMA

VARZZRZ R 2222222t Rt iRt 222222 2 tR a2 X2 22 22 22 2 2R X]

N R # *
{5 * MODULE NUMBER / NAME: 2.1.2 = MoveMsgtoNodeTTxDMA *
e ® *
- *  DATE: 3 Nov 83 *
o *  VERSION: A1 *
", * FUNCTION: Moves chars from queue InChar ®
» to queue NodeChar *
o ® INPUTS: i = index into PST *
3: * OUTPUTS: NONE ¥
3 * GLOBAL VARIABLES USED: PSTCharCount .
-~ ® GLOBAL VARIABLES CHANGED: NONE *
- * GLOBAL TABLES USED: InChar *
* NBT *
™ * PST *
1 * THT *
lfs # GLOBAL TABLES CHANGED: NBT *
&N * NodeChar *
w # PST *
T bd FILES READ: NONE *
) ® FILES WRITTEN: NONE *
3 * MODULES CALLED: 2.1.2.1 =~ BldTransportHeader ¥
S * X.7 =~ GatherStats *
\; * CALLING MODULES: 2.1 « SrvInputQueue :
g *

; @ #  AUTHOR: Capt Allan F. Masty, GCS-83D  #
“a : HISTORY: VSN A1 -~ 3 November 1983 :
-_\

..: l!*i*lli*l***!'lf*****************l*l**i*i**!*!********!*il*l****/
% MoveMsgtoNodeTTxDMA ( i )

- int i /* index into PST #/

W {

- char #CharPtr ;

int J

Ei BldTransportHeader ( i ) ;
8 for E CharPtr = THT, j = 0; j < PSTCharCount; j++ )
[ if ( j < THTSIZE )

s NodeChar[NBT[TTxDMA].PutIdx++] = ®(CharPtr++);

% else

§ NodeChar[NBT[TTxDMA].PutIdx++] = InChar[PST[i].InGetIdx4

}
3
= if ( PSTCharCount & 0000001 ) /% if odd # of characters ¥/
P ]

4 _'.t..:
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N NodeChar [ NBT [TTxDMA].PutIdx++ ] LF ;
oo GatherStats ( &THT, 1 ) ;

return ;
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D.1.9 BldTransportHeader

/!!*i*******!**i*ﬁ***********************************************
*

*
: MODULE NUMBER / NAME: 2.1.2.1 = BldTransportHeader :
* DATE: 3 Nov 83 *
* VERSION: A *
* FUNCTION: Writes into the 15 character *
* skeleton "THT" to create the *
* Message Transport Layer Header. ¥
bd INPUTS: i = index into PST ®
bd OUTPUTS: NONE *
* GLOBAL VARIABLES USED: NBTCharCount #
® GLOBAL VARIABLES CHANGED: LastMsgSeqNbr *
bd GLOBAL TABLES USED: PST *
® GLOBAL TABLES CHANGED: THT ®
* FILES READ: NONE ®
* FILES WRITTEN: NONE *
* MODULES CALLED: NONE *
* CALLING MODULES: 2.1.2 - MoveMsgtoNodeTTxDMA :
*

® AUTHOR: Capt Allan F. Masty, GCS-83D ®
* HISTORY: VSN A1 - 3 November 1983 :
#

AR AR RN R AR R RN RN RN R RN RN R RN NRRERRRARRRRNNRERNNRRERR

BldTransportHeader ( i )

int i /% PST index #*/
{
strcopy ( THT.TID, PST [1].TID, 3 ) ;
THT.Mode = PST [(i].TermMode ;

if (++LastMsgSeqNbr > MAXMSGSEQNBR )
LastMsgSeqNbr = 0 ;

intascii ( THT.MsgSeqNbr, LastMsgSeqNbr, 4 )
intasecii ( THT.MsgCharCnt, NBTCharCount, b)) ;
strcopy ( THT.OrgNode, "TTx", 3 ) ;
return ;
}
D=22
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D.1.10 SrvOutputQueue

AR R R AR AR AR R R RN R R AR R RN R AR R AR R N RN RN RN AR AR R RRRRR RN
* %
* MODULE NUMBER / NAME: 2.2 = SrvOutputQueue ¥
# %
* DATE: 3 Nov 83 *
* VERSION: A1 *
bod FUNCTION: Moves next screen character to #
# Transmit Data Buffer (XBUF) if *
* Transmit Control & Status *
* Register (XCSR) indicates that *
* the buffer is ready for it. ®
* INPUTS: i = index into PST *
# OUTPUTS: NONE *
*® GLOBAL VARIABLES USED: NONE *®
* GLOBAL VARIABLES CHANGED: NONE L
* GLOBAL TABLES USED: PST *
* GLOBAL TABLES CHANGED: OQutChar *
* PST *
* FILES READ: NONE bd
* FILES WRITTEN: NONE *
* MODULES CALLED: NONE ®
: CALLING MODULES: 2 = PerfNormalActivities ¥
*

* AUTHOR: Capt Allan F. Masty, GCS-83D *
@ : HISTORY: VSN A1 - 3 November 1983 ®
R #
ERREE AR RN RN RN RN AR RN R F R RN R RN RN NN R R R AR RN R AR RRERRRRRRRRARRR

SrvOutputQueue ( i )
int i /* index into the PST #/

{
printf ("™\n 227???2?? SrvOutputQueue ( %d ) ", i ) ;

if ({*PST [i].TxmStatAddr & 0200 )
#pST [i].TxmDataAddr = OutChar [PST[i].OutGetIdx] ;
if ( ++PST [i].0utGetIdx > PST [i].OutHighIdx )
PST [i].0utGetIdx = PST [i].OutLowIdx ;
}

return ;

}
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= D.1.11  SrvNodeQueue
f R [ R AR R RN R R RN RN RN RN RN RN RN RN RRRRRNARRRRRR NN
c .. * *
: * MODULE NUMBER / NAME: 2.3 = SrvNodeQueue *
. * *
N *  DATE: 3 Nov 83 *
< * VERSION: A1 b
j * FUNCTION: Controls movement of chars from #
* NodeChar to the DMA interface *
A * or to OutChar. *
- % INPUTS: n = index into NBT *
2 *  OQUTPUTS: NONE .
(., * GLOBAL VARIABLES USED: NBTCharCount b
* GLOBAL VAPIABLES CHANGED: EndIDX *
* NBTCharCount *
~ ® GLOBAL TABLES USED: NBT L
. * NodeChar ®
Y * PST *
f * THT ¥
N * GLOBAL TABLES CHANGED: NBT *
i ® FILES READ: NONE bd
. * FILES WRITTEN: NONE ¥
- bd MODULES CALLED: 2.3.1 = TTxtoDMAOutput *
N * 2.3.2 = DMAtoTTxOutput *
= % CALLING MODULES: 2 = PerfNormaldctivities *
: . » %
Y #  AUTHOR: Capt Allan F. Wasty, GCS-83D *
S * HISTORY: VSN A1 - 3 November 1983 *
. % *
% EEERER RS RN RN RN RN RN RN R RN N RN R RN RN AN AR RRRERR
. SrvNodeQueue ( n )
L int n ; /% index into the NBT#/
4 {
': int i ’
P
char %ec ;
! while ( NBT [n].GetIdx 1= NBT (n].PutIdx )
y i = NBROFPORTS ;
- for E p = 0; p < NBROFPORTS; p++ )
Y if ( strcompare (PST[pl.TID,
. &NodeChar[NBT[n].GetIdx], 3) == 3 )
s {
; S
% D-24
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i=p;
. P = NBT[n].GetIdx + &(THT.MsgCharCnt) - &(THT);
e

¢ = &( NodeChar [p]l ) ;

NBTCharCount = asciiint ( ¢, 4 ) ;
EndIdx = NBT [ n ].GetIdx + NBTCharCount ;

if ( n == TTxDMA )
TTxtoDMAOutput () ;
else
DMAtoTTxOutput ( i ) ;
} /* end 'if' %/
} /* end 'for' %/

if ({i == NBROFPORTS )

printf ("\n Invalid TID = ") ;

while ( NBT [ n ].GetIdx != NBT [n].PutIdx )
printf ("%c", NodeChar [NBT[n].GetIdx++] );

?rintf ("\n\n") ;

} /* end 'while' #/
return ;
}
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TTxtoDMAQutput

JRAERRERANRRERRE RN RN R R R SRR R RN R RN R R R R AR R RN AR ARRRRRLRRNN

®
#
%
#
#
%
#
#
%
*
t ]
*
*
t ]
%
*
*
®
#
%
E
*

T

MODULE NUMBER / NAME:

DATE:
VERSION:
FUNCTION:

INPUTS:
OUTPUTS:
GLOBAL VARIABLES USED:

GLOBAL VARIABLES CHANGED:
GLOBAL TABLES USED:

GLOBAL TABLES CHANGED:
FILES READ:

FILES WRITTEN:

MODULES CALLED:
CALLING MODULES:

203.1 -

3 Nov 83
A1

Controls movement of messages
from NodeChar to DMA interface

NONE
NONE
DMABusyFlag
EndIDX
DMABusyFlag
NBT
NodeChar
NBT

NONE
NONE

X.7 -
2-3 -

GatherStats
SrvNodeQueue

TTxtoDMAOutput

AUTHOR:
HISTORY:

XXX EX XXX XXX EREIRXZESXSR2Z XSRS AR2RR 22222 X222 R X222 2 D22

Capt Allan F. Masty, GCS-83D
VSN A1 - 3 November 1983

SN ek M e e Sk ak dke A e e e e e e ok ok Mk e K k%

Txt?DMAOutput )

if ( ( DMABusyFlag == 0 ) && ( ®*DMACSR & DMAREADY) )

{
#DMADBR = «((EndIdx - NBT [TTxDMA]l.GetIdx) / 2 ) ;
#DMACSR &= ~(DMAOMODE) ;
®DMACSR |= DMAODIRECTION ;
DMABusyFlag = 3 ; /% Output word in progress %/
}
else
{

printf ("\nTTxtoDMAOutput = DMA busy ==") ;
printf (" DMACSR = %o", *DMACSR ) ;

printf (" DMABusyFlag = %d", DMABusyFlag) ;
}

GatherStats ( &NodeChar [ NBT[TTxDMA].GetlIdx 1, 2 ) ;

while ( NBT [TTxDMA].GetIdx != EndIdx )
printf ("%c", NodeChar [ NBT [TTxDMA].GetIdx++ ] ) ;

return ;

}
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D.1.13 DMAtoTTxOutput

MODULE NUMBER / NAME:

DATE:
VERSION:
FUNCTION:

INPUTS:

OUTPUTS:

GLOBAL VARIABLES USED:
GLOBAL VARIABLES CHANGED:
GLOBAL TABLES USED:

GLOBAL TABLES CHANGED:

FILES READ:
FILES WRITTEN:
MODULES CALLED:
CALLING MODULES:

AUTHOR:

/
#*
#*
#
#*
*
#
%
*
#*
#*
#
*
#
*
#*
L
%*
L
#*
#*
*  HISTORY:
#*

DMAtoTTxOutput ( 1 )

int i
{
int P ;

......

(2 XX L2222 2222222222222 X2 222222 X2 222222 22222222222 222X 22222}

.......................
...........

RERRRERERRRRRERRERERRERRRERERRERRRERRRRERERRERRRRRRRRREERRRREERNN

2.302 -

3 Nov 83
A1
Controls movement of messages
from NodeChar to OutChar

i = index into PST

NONE
EndIDX
NONE

NBT
NodeChar
PST

THT

NBT

PST

NONE
NONE

x.7 -
203 -

Capt Allan F. Masty, GCS-83D
VSN A1 - 3 November 1983

DMAtoTTxOutput

GatherStats
SrvNodeQueue

S I BE B BE B BE BE BE BN IR B BE BE BE OBE OBE OBE OBE BN OBE NE AR B N

/% index into PST #/

GatherStats ( &NodeChar [ NBT[DMATTx]).GetIdx 1, 2 ) ;

p = NBT [DMATTx].GetIdx + &(THT.Mode) - &(THT) ;

PST [1i].TermMode = NodeChar
printf ("\nDMAtoTTxTransfer

{p] ;

= ") ;

/®* update LSI database #/

)

while ( ( NBT [DMATTx]).GetIdx != EndIdx ) &&
( PST [i].0utPutIdx < PST [i].OutHighIdx )

{
printf ("%c", NodeChar [ NBT [DMATTx].GetIdxl )

OutChar [PST[i].OutPutlIdx++] =
NodeChar [NBT[DMATTx].GetIdx++]
}
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D.1.14 TermSystem

VAAAAZE2 I E 2222222 2R 2222222222222 X222 A2 2222222222 X T

%
® MODULE NUMBER / NAME: 3 - TermSystem

#

* DATE: 3 Nov 83

* VERSION: A1

# FUNCTION: Performs termination proce#ssing
bd INPUTS: NONE

® QUTPUTS: NONE

bd GLOBAL VARIABLES USED: NONE

* GLOBAL VARIABLES CHANGED: NONE

* GLOBAL TABLES USED: PST

* GLOBAL TABLES CHANGED: NONE

¥ FILES READ: NONE

# FILES WRITTEN: NONE

* MODULES CALLED: X.4 - DispTime

b X.6 - DispElapsedTime

* CALLING MODULES: 0 - Main

»

* AUTHOR: Capt Allan F. Masty, GCS-83D

: HISTORY: VSN A1 - 3 November 1983

ER R AR RN RN R R RN R R RN RN RN R R R R RN R RN R RN RN RN NR LN

TermSystem ()

{
int i /% index into PST #/

*témp : /% temporary pointer %/

for ( 1 = 0; i < NBROFPORTS; i++ )
{ /®* restore old interrupt settings #/
PST [ i ]l.IntVectAddr ;
PST [ i ]l.StorIntVect ;
PST [ i ].StorPsSW ;

temp
®( temp )
;(temp+1)

printf ("\n\n++++++++ FEP aborted at ") ;
DispTime () ;

printf ("= - « <> elapsed time = ") ;
DispElapsedTime () ;

fclose ( fp ) ;

return ;
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Ef D.1.15 SOCInterruptServiceRoutine
i: JRERE AR RN R AR RN RN R R RN RN NN AR R AR AR RN ERANRN RN RN RN R RS
s * *
(_ ®* MODULE NUMBER / NAME: 1.2.1 - S0CInterruptServiceRoutine ¥
- * *
® DATE: 3 Nov 83 *
®  VERSION: A1 *
®# FUNCTION: Controls movement of characters *
* from Receiver Data Buffer (RBUF) ®
. * to queue InChar. ¥
- ® INPUTS: NONE *
- ®  QUTPUTS: NONE ®
Al ®* GLOBAL VARIABLES USED: NONE b
~n ® GLOBAL VARIABLES CHANGED: AbortFlag ®
®* GLOBAL TABLES USED: PST *
o % GLOBAL TABLES CHANGED: InChar *
- * PST *
(s # FILES READ: NONE *
- ® FILES WRITTEN: NONE *
- ®* MODULES CALLED: NONE *
- % CALLING MODULES: 1.2 = InitInterrupts (activation) #
- » #
. ® AUTHOR: Capt Allan F. Masty, GCS-83D ®
- ®# HISTORY: VSN A1 = 3 November 1983 *
~ ) #*
o ‘j} EEEERRARRAR RN RN R RN R RN RN RN RN R RN RN AR AR RN RRRRRRRARRRRNR
- SOCInterruptServiceRoutine ()
f entint () ; /* save registers */
7
InChar [PST[SOC].InPutIdx] = *PST[SOC].RcvDataAddr ;
®PST[SOC].TxmDataAddr = #PST[SOC].RevDataAddr ;
if ( InChar [ PST [SOC].InPutldx == CR )
#pST [SOC].TxmDataAddr = LF ;
! switch ( InChar [ PST [SOC].InPutIdx 1 )
) {
- case CTRLC :
. {
" AbortFlag = YES ;
2 break ;
. )
. case DEL :
. {
: if ( PST [SOC).InPutIdx > PST [SOC].InGetIdx )
e {
L _—
§ ’ D-30
b
s
N N e S e T N N S P g S T A A S TN NN




DA St b et Sl woll At O it it it At dull S - St 2ot e Jpew § w-ur-‘—-v—-hr_‘1

-~PST [SOC].InPutldx ;

®*PST [SOC].TxmDataAddr = BACKSPACE ;

while ((*PST[SOC].TxmStatAddr & 0200) == 0);
®*PST [SOC]).TxmDataAddr = SPACE ;

while ((*PST[SOC].TxmStatAddr & 0200) == 0); f
;PST [SOC].TxmDataAddr = BACKSPACE ;

break ; l
}

defa?lt :
if (++PST [SOC].InPutIdx == PST [SOC].InHighIdx )
--PST [SOC].InPutlIdx ;
break ;
} 1
} |

retint () ; /* restore registers %/

return ;
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fé D.1.16 T1InterruptServiceRoutine
% N R AR RN RN RN R RN AR RN RN RN RN RN R NN AR RN R R R RRRANRRRRN
.f. . '_. * *
IW : MODULE NUMBER / NAME: 1.2.2 = TlInterruptServiceRoutine :
>
N *  DATE: 3 Nov 83 *
; ®  VERSION: A1 *
" * FUNCTION: Controls movement of characters ®
) » from Receiver Data Buffer (RBUF) #
- * to queue InChar. *
g *  INPUTS: NONE »
= ® OQUTPUTS: NONE ®
", % GLOBAL VARIABLES USED: NONE ¥
. % GLOBAL VARIABLES CHANGED: NONE .
% GLOBAL TABLES USED: PST ®
5 ®# GLOBAL TABLES CHANGED: InChar *
N * PST *
ﬂ ® FILES READ: NONE ®
o # FILES WRITTEN: NONE #
~ ®# MODULES CALLED: NONE LA
= : CALLING MODULES: 1.2 - InitInterrupts (activation) ¥ |
. * |
o # AUTHOR: Capt Allan F. Masty, GCS-83D LI
o » HISTORY: VSN A1 - 3 November 1983 Y |
o .
-] R RN R RN R R RN N AR AR RN RNRRRRRRRRRRE )

TiInterruptServiceRoutine ()

entint () ; /% save registers %/

o e
o fet

InChar [PST[T1].InPutIdx] = #PST[T1].RcvDataAddr ;
®PST[(T1].TxmDataAddr = #PST[T1].RevDataAddr ;

7 if ( InChar [ PST [T1].InPutIdx ] == CR )
v #PST [T1].TxmDataAddr = LF ;

if ({InChar [ PST [T1].InPutIdx ] == DEL )
o

if ( PST [T1].InPutldx > PST [T1].InGetIdx )
{

S

«=PST [T1].InPutldx ;

A #pPST [T1].TxmDataAddr = BACKSPACE ;
while ((®*PST[T1].TxmStatAddr & 0200) == 0);
#PST [T1].TxmDataAddr = SPACE ;

while ((#*PST[T1].TxmStatAddr & 0200) == 0);

D

; #pST [T1].TxmDataAddr = BACKSPACE ;
B }

< }

1 B
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S else
Pt .. if (++PST [T1].InPutldx

) . == PST [T1].InHighIdx )
R --PST [T1].InPutldx ;
K retint () ; /* restore registers #/

" return ;
i }
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D.1.17 T2InterruptServiceRoutine
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: MODULE NUMBER / NAME: 1.2.3 = T2InterruptServiceRoutine
® DATE: 3 Nov 83

®  VERSION: A

® FUNCTION: Controls movement of characters

' from Receiver Data Buffer (RBUF)
* to queue InChar.

& INPUTS: NONE

®  QUTPUTS: NONE

* GLOBAL VARIABLES USED: NONE

®# GLOBAL VARIABLES CHANGED: NONE

®# GLOBAL TABLES USED: PST

% GLOBAL TABLES CHANGED: InChar

* PST

® FILES READ: NONE

¥ FILES WRITTEN: NONE

* MODULES CALLED: NONE

®# CALLING MODULES: 1.2 - InitInterrupts (activation)
#

% AUTHOR: Capt Allan F. Masty, GCS-83D

® HISTORY: VSN A1 - 3 November 1983

#

R RN R R R R R RN RN RN RN RN RN RN RN RN RN RN RN RN RN RRERER

T2InterruptServiceRoutine ()

entint () ; /* save registers #/

InChar [PST[T2].InPutldx] = ®*PST[T2].RcvDataAdir ;
®PST[T2].TxmDataAddr =

if ( InChar [ PST [T2].InPutIdx ] == CR )
#*pST [T2].TxmDataAddr = LF ;

if ( InChar [ PST [T2].InPutldx ] == DEL )
{
if ( PST ([(T2].InPutldx > PST {T2].InGetIdx )
{

-=PST [T2].InPutldx ;

#pST [T2].TxmDataAddr = BACKSPACE ;
while ((®*PST[T2].TxmStatAddr & 0200) == 0);
#pST ([(T2].TxmDataAddr = SPACE ;
while ((#*PST[T2].TxmStatAddr & 0200) == 0);
;PST [T2].TxmDataAddr = BACKSPACE ;

SN e oake ke e ke ok e Ak ol ke e oe ke ek ak ok e Kk Ak koK

#PST[T2] .RevDataAddr ;
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else
s if (++PST [T2].InPutldx ==
-=PST [T2].InPutldx ;

retint () ; /* restore

return ;
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PST [T2].InHighIdx )

registers #/
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D.1.18 T3InterruptServiceRoutine

VAAAARA 2 AL S22 R s s 2222 a2 R 2222222222222 X222 X222 X2
*

*
* MODULE NUMBER / NAME: 1.2.4 - T3InterruptServiceRoutine ¥
* #
% DATE: 3 Nov 83 *
® VERSION: A1 *
® FUNCTION: Controls movement of characters *
* from Receiver Data Buffer (RBUF) ¥
® to queue InChar. *
®# TINPUTS: NONE ¥
® QUTPUTS: NONE *
® GLOBAL VARIABLES USED: NONE *
% GLOBAL VARIABLES CHANGED: NONE *
# GLOBAL TABLES USED: PST *
*¥ GLOBAL TABLES CHANGED: InChar ¥
* PST *
* FILES READ: NONE *
® FILES WRITTEN: NONE *
¥ MODULES CALLED: NONE ¥
* CALLING MODULES: 1.2 - InitInterrupts (activation) :
*
# AUTHOR: Capt Allan F. Masty, GCS-83D *
®#  HISTORY: VSN A1l = 3 November 1983 :
*
ERA AR RR R AR RN AR RN RN RN R R R RN RN R RN RRRARRRRRRRRRRR SR RRRERRRRER

T3InterruptServiceRoutine ()

{

entint () ; /® save registers #/

InChar [PSTIT3].InPutlIdx]
#PST[(T3].TxmDataAddr

#*pST{T3].RecvDataAddr ;
#PST[T3].RcvDataAddr ;

if ( InChar [ PST [T3].InPutIdx 1 == CR )
#PST [T3].TxmDataAddr = LF ;

if ( InChar [ PST [T31.InPutlIdx ] == DEL )
{
if ( PST [T3].InPutIdx > PST [T3].InGetIdx )
{

-=PST [T3].InPutldx ;

#PST [T3].TxmDataAddr = BACKSPACE ;

while ((*PST[T3].TxmStatAddr & 0200) == 0);
#PST [T3].TxmDataAddr = SPACE ;

while ((#*PST[T3].TxmStatAddr & 0200) == 0);
#pST [T3].TxmDataAddr = BACKSPACE ;

}
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X elseif ( ++PST [T31.InPutldx > PST [T31.InHighIdx )
--PST [T31.InPutldx ;
retint () ; /* restore registers */
return ;
G
=
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T4InterruptServiceRoutine

JERREREERERRERRRRERRERRRRRRRRRERRRRERERRRRRERERERCR RN RRRREES

*
MODULE NUMBER / NAME:

DATE:
VERSION:
FUNCTION:

INPUTS:
OUTPUTS:
GLOBAL VARIABLES USED:

GLOBAL TABLES USED:
GLOBAL TABLES CHANGED:

FILES READ:
FILES WRITTEN:
MODULES CALLED:
CALLING MODULES:

AUTHOR:
HISTORY:

GLOBAL VARIABLES CHANGED:

1.2.5 = T4InterruptServiceRoutine

3 Nov 83

A1

Controls movement of characters
from Receiver Data Buffer (RBUF)
to queue InChar.

NONE

NONE

NONE

NONE

PST

InChar

PST

NONE

NONE

NONE

1.2 = InitInterrupts (activation)

Capt Allan F. Masty, GCS-83D
VSN A1 3 November 1983
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%
*
%
*
#
%
%
]
#
#
*
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T4InterruptServiceRoutine ()

{

entint () ; /®* save registers #/

InChar [PST[T4].InPutldx]
#PST[{TY4] .TxmDataAddr

#PST[TU4] .RevDataAddr ;
#pPST[T4] .RevDataAddr ;

if ( InChar [ PST [T4].InPutlIdx ] == CR )
#PST [T4].TxmDataAddr LF ;

if ({InChar { PST [T4].InPutIdx ] == DEL )
if ( PST (T4]).InPutIdx > PST [T4].InGetIdx )

{

-~PST [T4].InPutldx ;

#PST [T4].TxmDataAddr = BACKSPACE ;
while ((*PST[T4].TxmStatAddr & 0200)
*pPST [TU4].TxmDataAddr = SPACE ;
while ((*PST[T4].TxmStatAddr & 0200) == 0);
#pST [Tu4].TxmDataAddr = BACKSPACE ;

}

0);
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else
if ( ++PST [T4].InPutIdx > PST [T4].InHighIdx )
--PST [Tu4].InPutldx ;

retint () ; /* restore registers #/

return ;
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D.1.20 TS5InterruptServiceRoutine

/R R R AR RE R R RN RN AR R B R RERERLRRR RN RRRRARRRRRRRRRRRERERT RN RN

# *
: MODULE NUMBER / NAME: 1.2.6 = T5InterruptServiceRoutine :
® DATE: 3 Nov 83 *
% VERSION: A1 %
®# FUNCTION: Controls movement of characters ®
* from Receiver Data Buffer (RBUF) ¥
* to queue InChar. *
®# TINPUTS: NONE *
® OQUTPUTS: NONE *
® GLOBAL VARIABLES USED: NONE bd
® GLOBAL VARIABLES CHANGED: NONE ®
®# GLOBAL TABLES USED: PST ®
® GLOBAL TABLES CHANGED: InChar *
s PST *
* FILES READ: NONE bd
¥ FILES WRITTEN: NONE *
* MODULES CALLED: NONE b
* CALLING MODULES: 1.2 - InitInterrupts (activation) :
»

% AUTHOR: Capt Allan F. Masty, GCS-83D *
# HISTORY: VSN A1 - 3 November 1983 :
#

ERRARRRA R AR AR RN RN RN RN RN RN NN RN R RN RN RN RN R R RN NN RRRRRRARNNNEE

TSInterruptServiceRoutine ()

entint () ; /* save registers #/

#PST[TS5] .RcvDataAddr ;
#PST{TS5] .RevDatadddr ;

InChar [PSTI[TS5].InPutIdx]
#PST[TS5] .TxmDataAddr

if ( InChar [ PST (T5).InPutldx ] == CR )
®PST [T5]1.TxmDataAddr = LF ;

if ( InChar [ PST [T5].InPutIdx ] == DEL )
{
if ( PST [T5].InPutIdx > PST [T5].InGetIdx )

{

-=PST [T5].InPutldx ;

#PST [T5].TxmDataAddr = BACKSPACE ;

while ((*PST[T5].TxmStatAddr & 0200) == 0);
#pST [T5]1.TxmDataAddr = SPACE ;

while ((#*PST[T5].TxmStatAddr & 0200) == 0);
#pST [TS].TxmDataAddr = BACKSPACE ;

}

D-40

...................




DO LR Y

-

else
: : if ( ++PST [T5].InPutIdx > PST [T5).InHighIdx )
b o -=-PST [T5].InPutldx ;

retint () ; /* restore registers #/
3: return ;
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D.1.21 T6InterruptServiceRoutine

VALRARARALE 222222 2R 22 222 22 X222 22 2222222 22222222222

* %
* MODULE NUMBER / NAME: 1.2.7 = T6InterruptServiceRoutine #%
» *
® DATE: 3 Nov 83 *
®  VERSION: A1 *
® FUNCTION: Controls movement of characters *
o from Receiver Data Buffer (RBUF) #
# to queue InChar. *
® INPUTS: NONE ®
® OQUTPUTS: NONE *
® GLOBAL VARIABLES USED: NONE *
®* GLOBAL VARIABLES CHANGED: NONE *
®  GLOBAL TABLES USED: PST *
% GLOBAL TABLES CHANGED: InChar *
b PST *®
®# FILES READ: NONE *
® FILES WRITTEN: NONE *
®* MODULES CALLED: NONE ®
® CALLING MODULES: 1.2 -~ InitInterrupts (activation) :
*
®  AUTHOR: Capt Allan F. Masty, GCS=-83D *
* HISTORY: VSN A1 - 3 November 1983 *
» *
. AR RN RN R R R R RN NN AR R RN RN R RN R R AR RN R NN RRA RN RRNE
G T6InterruptServiceRoutine ()

entint () ; /% save registers #/

InChar [PST[T6].InPutIdx] = ®*PSTI[T6].RcvDataAddr ;

#pPST(T6].TxmDataAddr = #PST[T6].RevDataAddr ;

if ( InChar [ PST [T6].InPutIdx 1 == CR )

#pST [T6].TxmDataAddr = LF ;
if ({InChar [ PST [T6].InPutldx == DEL )
- if ( PST [T6].InPutIdx > PST [T6].InGetIdx )

X {
; ==PST [T6].InPutIdx ;

®PST [T6].TxmDataAddr = BACKSPACE ;

while ((*PST[T6].TxmStatAddr & 0200) == 0);
#PST [T6].TxmDataAddr = SPACE ;

while ((®*PST[T6].TxmStatAddr & 0200) == 0);
#pST [T6].TxmDataAddr = BACKSPACE ;

}




"
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o else
e . if ( ++PST [T6]).InPutIdx > PST [T6].InHighIdx )
U --PST [T6].InPutldx ;

retint () ; /% restore registers ¥/

v
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return ;
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D.1.22 T7TInterruptServiceRoutine

o SRR RN R RN R RN R RN RN RN R NN R R R RN R R RN R RNRNERRRENRRRRR
* *
* MODULE NUMBER / NAME: 1.2.8 = T7TInterruptServiceRoutine #*
* *
® DATE: 3 Nov 83 #
®  VERSION: A1 bd
® FUNCTION: Controls movement of characters *
* from Receiver Data Buffer (RBUF) #
* to queue InChar. *
® INPUTS: NONE *
® OQUTPUTS: NONE #*
% GLOBAL VARIABLES USED: NONE %
% GLOBAL VARIABLES CHANGED: NONE ¥
®# GLOBAL TABLES USED: PST ¥
® GLOBAL TABLES CHANGED: InChar *
* PST *
® FILES READ: NONE ¥
* FILES WRITTEN: NONE *
®# MODULES CALLED: NONE *
: CALLING MODULES: 1.2 = InitInterrupts (activation) ¥

*
* AUTHOR: Capt Allan F., Masty, GCS-83D *
®  HISTORY: VSN A1 = 3 November 1983 :
»
R RN RN AR RN RN RN RN R RN AR R RN NN RN RN RN N

T7InterruptServiceRoutine ()

entint () ; /% save registers %/

#pPST[TT7].RcvDataAddr ;
#PST[TT7].RevDataAddr ;

InChar [PST[T7].InPutldx]
#PST[T7].TxmDataAddr

if ( InChar [ PST [T7].InPutIdx ] == CR )
*PST [T7].TxmDataAddr = LF ;

if ({InChar [ PST [T7].InPutldx ] == DEL )
if ( PST [T7]1.InPutlIdx > PST [T7].InGetIdx )

{

==PST [T7].InPutldx ;

#PST [T7].TxmDataAddr = BACKSPACE ;

while ((®*PST[T7].TxmStatAddr & 0200) == 0);
#PST [T7].TxmDataAddr = SPACE ;
while ((®*PST[T7].TxmStatAddr & 0200) 0);
#PST [T7].TxmDataAddr = BACKSPACE ;

}
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else
if ( ++PST [T7].InPutlIdx > PST [T7].InHighIdx )
~=PST [T7].InPutldx ;
retint () ; /* restore registers ¥/

return ;

}
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t; D.1.23 DMAInterruptServiceRoutine
::: N /*************************!**************************************
P to * %
(. ® MODULE NUMBER / NAME: 1.2.9 - DMAInterruptServiceRoutin %
= * #
;: ®  DATE: 3 Nov 83 *
2 *  VERSION: A1 *
: % FUNCTION: Controls movement of characters *
* from the DMA interface to NodeChar ¥
®# INPUTS: NONE *
* QUTPUTS: NONE *
M % GLOBAL VARIABLES USED: DMABusyFlag *
I< * DMAwc *
e ®# GLOBAL VARIABLES CHANGED: DMABusyFlag *
* DMAwe ¥
x # GLOBAL TABLES USED: NBT *
- * NodeChar ®
N * PST *
(8 ®# GLOBAL TABLES CHANGED: NBT *
N * PST *
% FILES READ: NONE ¥
- ®# FILES WRITTEN: NONE *
< * MODULES CALLED: 1.2.9.1 = SetUpForInputDMA *
- * CALLING MODULES: 1.2 = InitInterrupts (activation) :
- 3
@ % AUTHOR: Capt Allan F. Masty, GCS-83D b
G * HISTORY: VSN A1 - 3 November 1983 *
_ s *
3 ERE AR AR R AR SRR R RN AR RN RN AR R R RN R RN RN R R RN R RR RN R R RN RRRRRRRNNNR /
"4
. DMAInterruptServiceRoutine ()
. entint () ; /% save registers #/
b printf ("\n ... DMACSR = %0 \n", *DMACSR ) ;
if ( *DMACSR & DMANEX ) /®* if NEX memory accessed %/
printf ("\n . . . . NEX at %o", *DMABAR ) ;
else
{
A if ( ®*DMACSR & DMAIREQUEST ) /* host input request ¥*/
N SetUpForInputDMA () ;
else
{
Z printf ("\n . . . . Output Transfer Complete\n\n") ;
) switch DMABusyFlag
3 - (
. case 1 : /% Input word expected #/
{
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}
retint ()

}

return ;

default :

break ;
}
2 : /®*% Input block expected ¥/
{
printf ("\n DMABusyFlag = %d\n",DMABusyFlag);
break ;
}
3: /% Output word in progress ¥/
{
printf ("\n DMABusyFlag = %d\n",DMABusyFlag);
break ;
}
y . /% Output block in progress #/
{
printf ("\n DMABusyFlag = %d\n",DMABusyFlag);
break ;
}
{
printf ("\n DMABusyFlag = %d\n",DMABusyFlag);
break ;
}

...............

printf ("\n DMABusyFlag = %#d\n",DMABusyFlag);
DMAwec = *DMADBR ;
if ((NBT[DMATTx].PutIdx+(DMAwc¥*2))

<= NBT[DMATTx].HighIdx)

{
++DMABusyFlag ; /* block input expected */

#DMABAR = &(NodeChar[NBT[DMATTx1.PutIdx]);
#DMAWCR = =DMAwc ;
#DMACSR |= DMAODIRECTION ;
#DMACSR &= ~DMAOMODE ;
#DMACSR |= DMAGO ;
}
else

printf ("\n +=z+= DMAwc = %d , PutlIdx = %d \n
DMAwec, NBT[DMATTx].PutIdx );

/% end of 'switch' processing %/

/% restore registers #/

D=47




D.1.24  SetUpForInputDMA |

ZZ 5 /ana;*na&;anu;a***1**********************************************
5 S * !
" * MODULE NUMBER / NAME: 1.2.9.1 <« SetUpForInputDMA *
o * *
= * DATE: 3 Nov 83 *
- ®#  VERSION: A1 *
< #  FUNCTION: Programs the DMA interface to *
o receive a transfer from Host. *
o ®# INPUTS: NONE *
- ®  QUTPUTS: NONE ¥
~ ®# GLOBAL VARIABLES USED: NONE bd
"o # GLOBAL VARIABLES CHANGED: DMABusyFlag *
) * GLOBAL TABLES USED: InChar *
* PST * ‘
N ® GLOBAL TABLES CHANGED: PST *
En * FILES READ: NONE *
i * FILES WRITTEN: NONE *
i * MODULES CALLED: NONE ¥
-, ®# CALLING MODULES: 1.2.9 - DMAInterruptServ1ceRout1ne*
* I
4
N * AUTHOR: Capt Allan F., Masty, GCS-83D *
> ®# HISTORY: VSN A1 - 3 November 1983 :
#* i
£ ERAN AR RN RN AR RN R AR RN R R R RN RN A RN RN AR RE RN AR RN RRRRRRRRRRR
N3
Y] SetUpForInputDMA ()
-J\ {
M printf ("™\n . . DMA Input Interrupt Request") ;
2 DMABusyFlag = 1 ; /®* Input word expected ¥/
) #DMABAR = &( InChar [PST [DMA].InPutIdx++] ) ;
J if ( *DMACSR & DMAIMODE ) /* if request for 'word' mode ¥/
{
W *DMACSR |= DMAOMODE ; /% set output 'word' mode #/
- SDMAWCR = =1 ; /% set Word Count register ¥/
}
else /* request is for 'block' transfer %/
{
#DMACSR &= ~( DMAOMODE ); /* set output 'block' mode */
DMAWCR = =( DMAwc ) ; /% set Word Count register ¥/
DMABusyFlag++ ; /% Input block expected L4
}
>
N printf ("\n ... DMACSR = %o \n", #*DMACSR ) ;
N return ;
E; }

D-48




o
o D.2 LFEPHI.C Program modules
7 ﬁ;l R RN RN RN R RN R RN RN RN RN RN RN RN RN RN R RN RN R RN RN RRRARN
{ * *
- * TITLE: LSI FEP Extended Memory 'C' Program *
b - hd FILENAME: LFEPHI.C :
~ *
- * DATE: 3 Nov 83 *
- * VERSION: A1 *
* OWNER: Capt Allan F. Masty *
# COMPUTER SYSTEM: LSI-11/23 *
D * OPERATING SYSTEM: RT11XM *
o * LANGUAGE: Telecon 'C! :
*
o ¥ CONTENTS: X.1 - DispPST *
* X.2 - DispNBT *
o * X.3 - GetCurrentTime *
N * X.4 -~ DispTime *
:,‘,E * X.5 <~ CalcElapsedTime ¥
)3 * X.6 - DispElapsedTime *
oot * X.7T - GatherStats *
s * :
- * FUNCTION: Provides an extended memory resident *
;:: * collection of service subroutines for %
' : use by the low memory LFEPLO.C program *
t %
,”‘ , REEE AR RN AR RN E RN R RN AR ERE RN RN R AR R R RN AR RN R R RN RRRRRNRRRERRRRRRRR
¢ GE’
(:‘:; /* ® ® 0 0 0 90 Q0 & 000 o0 boe GLOBALS ® & 60060608 ¢ 8 0 a9 N80 00 */
2
N #include "lfepio.h" /*  Standard IO routines %/
ﬁg extern int fopen () ;
i; /* . . . gtime () subr call data structure support 4
= struct timerec
2 {
e int w1 ; /* high order byte = minutes,
e low order byte = hours #/
= int w2 ; /% high order byte = tics,
o : low order byte = seconds #/
-'_: }
o time ;
.
:j char tim [11] ;
7
e int
. StartHr = =1,
o D-49
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StartMin = -1 ,
. StartSec = -1 ,
- StartTic = -1 ,
hours ,
minutes ,
seconds ,
ticks ;
extern int *fp ;
/% . . Port Status ( PS ) Table defines & declarations . . #/
f#define NBROFPORTS 9 /* NBROFTERMINALS +SOC +DMA ¥/
struct ?ortStatusRecord
char TID [4] ; /% VT-100 Terminal ID */
char TermMode ; /% line or character mode */
int InLowlIdx ; /% Input buffer pointers L4
int InPutlIdx ;
int InGetIdx H
int InHighIdx ;
- int OutLowIdx ; /% Output buffer pointers ¥*/
0 int OutPutldx ;
int OutGetIdx ;
int OutHighIdx ;
int #RcvStatAddr ; /% receive port status addr */
int #RcvDataAddr ; /* receive port data addr ®/
int *TxmStatAddr ; /% transmit port status addr¥*/
int #TxmDataAddr ; /* transmit port data addr */
int #IntVectAddr ; /% receive port int, addr *®/
int IntRoutineAddr ; /* Interrupt service routine®/
int StorIntVect ;
int StorPSW ;
b
f#define PSRSIZE sizeof ( PortStatusRecord )
/¥ . . . .. misc defines for Node Buffer table e 74
fdefine NBROFBUFFERS 2 /%* Nmbr of Node buffers L4




/% . . . ¢« ¢« « « « « Node Buffer Table declaration . . . . ¥/

struct NodeBufferRecord

char OrgNode [4] ;
int LowIdx
int PutIdx ;
int GetIdx ;
%nt HighIdx ;
1

f#define NBRSIZE sizeof ( NodeBufferRecord )

/% e « « « Message Transport Layer Header

struct MngEansportLayerHeader

char TID [3] ;
char Mode ;
char MsgSeqNbr [4] ;
char MsgCharCnt [4] ;
ihar OrgNode [31 ;

1

fdefine THTSIZE sizeof ( MsgTransportLayerHeader )
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e .
ﬁf‘ D.2.1 DispPST
}:':‘:: /!**l************************************************************
> % *
*_-. * MODULE NUMBER / NAME: X.1 - DispPST *
L~ * *
L *#  DATE: 3 Nov 83 *
e, *  VERSION: A1 *
[~ * FUNCTION: Displays (upon the SOC terminal #
3 * screen) certain PST values. *
N, * INPUTS: P = pointer to PST *
AN *  QUTPUTS: NONE '
e * GLOBAL VARIABLES USED: NONE ¥
N * GLOBAL VARIABLES CHANGED: NONE *
= * GLOBAL TABLES USED: PST ®
* GLOBAL TABLES CHANGED: NONE *
e * FILES READ: NONE *
s * FILES WRITTEN: NONE *
.,-" * MODULES CALLED: NONE *
s b CALLING MODULES: 2.1.1 = EvalSOCInput *
o * *
A * AUTHOR: Capt Allan F. Masty, GCS-83D #
M * HISTORY: VSN A1 - 3 November 1983 :
EAP) L
-5 AR AR RN R AR RN RN RN NN NN R RR RN RN RN RN RN AR RRRRRRRNRRRRRRRRER /
PO DispPST ( P )
i &
- struct PortStatusDataRecord *P ;
o {
- int i /% loop control variable #*/
'.:;:_ printf ("™\n i TID M I.LOW I.PUT I.GET I.HIGH") ;
f' printf (" O.LOW O.PUT O0.GET O.HIGH\n\n")
-, for ( i = 0; i < NBROFPORTS ; i++ )
{

_ printf (" %d", 1) ;

i printf (" %sm", P=> TID ) ;

- printf (" %c", P-> TermMode ) ;

.:".

D if ( P=> InLowIdx < 1000 )

= printf (" ") ;
A if ( P=> InLowIdx < 100 )
o printf (" ") ;
o if ( P=> InLowldx < 10 )

- printf (m ") ;

o printf (" %d", P-> InLowIdx ) ;
.2 SIS
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if ( P=> InPutIdx < 1000 )
printf (" ")
if ( P=> InPutIdx < 100 )
printf (" ") ;
if ( P=> InPutldx < 10 )
printf (" ")
printf (" %d", P=> InPutlIdx )

if ( P=-> InGetIdx < 1000 )

printf (n n)

if ( P=> InGetIdx < 100 )

printf (m ")

if ( P-> InGetIdx < 10 )

printf (m )

printf (" %d", P-> InGetIdx )
if ( P=> InHighIdx < 1000 )

printf (" )

if ( P-> InHighIdx < 100 )

printf (n ")

if ( P=> InHighIdx < 10 )

printf (m ")
printf (" %dn,

if ( P=> QutLowlIdx < 1000 )

printf (m m)

if ( P=> OutLowIdx < 100 )

printf (m n)

if ( P=> OutLowlIdx < 10 )

printf (m n)
printf (n %dn,

if ( P=> OutPutIdx < 1000 )

printf (n n)

if ( P=> OutPutlIdx < 100 )

printf (n ")

if ( P=> OutPutIdx < 10 )

printf (n )

printf (" %d", P=> OutPutldx ) ;
if ( P=> OutGetIdx < 1000 )

printf (n m)

if ( P-> OutGetIdx < 100 )

printf (n ")

if ( P=> OutGetlIdx < 10 )

printf (" ")

printf (" %d", P-> OutGetIdx ) ;
if ( P=-> OutHighIdx < 1000 )

printf (m ")

if ( P=> OutHighIdx < 100 )

.
b

P=> InHighIdx ) ;

.
’

?

P~> OutLowIdx ) ;

D-53
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2O printf (n ")
RE if ( P-> OutHighIdx < 10 )
CORA printf (" ") ;
printf (n %d", P=> OutHighIdx ) ;
;& printf ("\n") ;
}} P +z PSRSIZE ;
}

e return
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D.2.2 DispNBT

/
#
*
*
%
*
#
#
#
|
E
]
*
%
#*
%
*
%
*
%
*
]
#

MODULE NUMBER / NAME:

DATE:
VERSION:
FUNCTION:

INPUTS:

OUTPUTS:

GLOBAL VARIABLES USED:
GLOBAL VARIABLES CHANGED:
GLOBAL TABLES USED:
GLOBAL TABLES CHANGED:
FILES READ:

FILES WRITTEN:

MODULES CALLED:

CALLING MODULES:

AUTHOR:
HISTORY:

L A2A 222222222222 22222222222 22222222222 2222222222222 222 R )

DispNBT ( P )

struct NodeBufferRecord

{

int n ;

printf ("\n i low put

{
printf (" %d", n ) ;

2R XXX XX XXX X222 2222 222222222 X2 2R R

X.2 - DispNBT

3 Nov 83

A1

Displays (upon the SOC terminal
screen) certain NBT values.
P = pointer to NBT

NONE

NONE

NONE

NBT

NONE

NONE

NONE

NONE

2.1.1 = EvalSOCInput

Capt Allan F, Masty, GCS-83D
VSN A1 - 3 November 1983

SN e ok dc M sk ok ke ole ok sk ak ok ak e a sk A Wk W Ak

*P;
/% loop control variable #*/

get high \n\n" ) ;

for ( n = 0; n < ( NBROFBUFFERS ); n++ )

if ( P=> LowIdx < 10000 )
printf (n ") ;

if ( P=> LowIdx < 1000 )
printf (™ ") ;

if ( P=> LowIdx < 100 )
printf (" ")

if ( P=> LowIdx < 10 )
printf (n ") ;

printf (™ %d", P=> Lowldx ) ;

if ( P=> PutIdx < 10000 )

printf (m w)

if ( P=> PutIdx < 1000 )

D-55




Va4
.

printf (n ") ;

if ( P> Putldx < 100 )
printf (m n)

if ( P<> Putldx < 10 )
?

printf (n n)
printf (" %d", P-> Putldx

if ( P<> GetIdx < 10000 )
printf (n n)

if ( P<> GetIdx 1000 )
printf (n u)

if ( P<> GetlIdx 100 )
printf (m )

if ( P=> GetlIdx
printf (m )

printf (" %d", P-> GetlIdx

10 )

e A ve Awe Awe

if ( P<> HighIdx < 10000 )
printf (m ) ;

if ( P-> HighIdx < 1000 )
printf (n ") ;

if ( P-> HighIdx < 100 )
printf (" n) ;

if ( P> Highldx < 10 )
printf (m w)

printf (" %d\n", P-> HighIdx )

§ += NBRSIZE ;

return ;

D-56

LSO YRR WO .}4'\- ala -..1_\.\

)

-e

)

e

-e

Ataiata _.'}4\-\.}

> \." S N ’\\\....- ....................... EACR e e e e e .

\..h \.L‘,\.S A A

4




D.2.3 GetCurrentTime

VAAZZZ2 2R3 2222222222 222222222222 22222222 22 Rt il ill

* *
* MODULE NUMBER / NAME: X.3 - GetCurrentTime .
*
® DATE: 3 Nov 83 *
® VERSION: A1 *
® FUNCTION: Evokes Macro-11 coded function %
& ngtime" (located in library *
* LFMLLO.MAC) to read system time ¥
hd INPUTS: NONE *
* OUTPUTS: NONE *
* GLOBAL VARIABLES USED: hours, minutes, seconds, ticks ¥
% GLOBAL VARIABLES CHANGED: hours, minutes, seconds, ticks, *%
* StartHr, StartMin, StartSec, *
] StartTic. *
® GLOBAL TABLES USED: time *
® GLOBAL TABLES CHANGED: time, tim ®
* FILES READ: NONE *
* FILES WRITTEN: NONE *
* MODULES CALLED: NONE ¥
® CALLING MODULES: X.4 - DispTime :
» ;
* AUTHOR: Capt Allan F. Masty, GCS-83D ®
* HISTORY: VSN A1 - 3 November 1983 :

. #

‘j’ AR R R R R RN R R R R R R RN NR A NN N AR R R AR RERRRRRR )

GetCurrentTime ()

{
int k ;

gtime ( time ) ;

hours = time.wl & 0377
minutes = ( time.w! >> 8 ) & 0377 ;
seconds = time.w2 & 0377
. ticks = ( time.w2 >> 8 ) & 0377 ;
- if ({StartHr <0)
‘ StartHr = hours ;
StartMin = minutes ;
StartSec = seconds ;
. StartTic = ticks ;
. }
: tim [ 0] = ( hours / 10 ) + '0' ;
tim [ 1] = ( hours % 10 ) + '0°' ;



'.'.-'.F.-',‘-‘.P Al e 2t B W A S ABUSCRACK A A IR AN AN A R

R s

1. tim [ 2) = *t:'

o . tim [ 3] = (minutes /7 10 ) + '0' ;
g tim [ 4] = (minutes % 10 ) + '0' ;
s tim [ 5] = ':'

'_ tim [ 6] = (seconds / 10 ) + '0' ;
3 tim [ 7] = (seconds % 10 ) + '0' ;
" tim [ 8] = '

2 tim [ 91 = ( ticks / 10 ) + '0' ;
o tim [10] = ( ticks % 10 ) + '0' ;
. return ;

E\

N::: }
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rh$ D.2.4 DispTime
>

?ﬁ -ﬂﬁ- JRRE R RN NN RN RN RN RN R RN RN AR RN R RR RN RN AR NN RNR RN
’ * *
(n ' MODULE NUMBER / NAME: X.4 - DispTime *
AR #
NP * DATE: 3 Nov 83 *
e bd VERSION: Al *
o * FUNCTION: Displays (upon the SOC terminal *
. screen) current system time. ®
- #  INPUTS: NONE *
- * OUTPUTS: NONE *
- * GLOBAL VARIABLES USED: NONE *
<ﬁﬁ * GLOBAL VARIABLES CHANGED: NONE *
. * GLOBAL TABLES USED: tim ®
b GLOBAL TABLES CHANGED: NONE *®
[ * FILES READ: NONE ®
L * FILES WRITTEN: NONE *
e # MODULES CALLED: X.3 - GetCurrentTime *
PN, * CALLING MODULES: 2 - PerfNormalActivities *
T * 2.1.1 = EvalSOCInput *
e * 3 - TermSystem *
oy * *
"y * AUTHOR: Capt Allan F. Masty, GCS-83D *
%: ' HISTORY: VSN A1 - 3 November 1983 ’
“
1 N R RN R R RN RN RN NN NN R RN RN RN A NN RRRRRRRNARRARRNRREER

DispTime ()

w
'-‘-
o {
75 int k ;
GetCurrentTime () ;
’;: for ( k = 0; k < sizeof (tim); k++ )
o printf ("%c", tim [k] ) ;
< printf ("\n");
g |
| return ;
s |
2 }
Q;
1N
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L
- , JERR R RN RN AR AR R R R AR R R R RN RN R R RN RN RN RN R RN RN RN RNAR RN
s i % #*
%& * MODULE NUMBER / NAME: X.5 = CalcElapsedTime *
-~ * *
o * DATE: 3 Nov 83 *
¥§ * VERSION: A1 ®
N * FUNCTION: Calculates elapsed time from *
* FEP start-up to FEP termination #
J ® INPUTS: NCNE *
h * OUTPUTS: N( NE &
\ * GLOBAL VARIABLES USED: hcuars, minutes, seconds, ticks, #%
\ * StartHr, StartMin, StartSec, *
' * StartTic *
* GLOBAL VARIABLES CHANGED: hours, minutes, seconds, ticks %
N * GLOBAL TABLES USED: NONE *
x- * GLOBAL TABLES CHANGED: NONE *
3 ® FILES READ: NONE ®
;: * FILES WRITTEN: NONE *
Y bd MODULES CALLED: X.3 -~ GetCurrentTime *
: * CALLING MODULES: X.6 - DispElapsedTime *
”, * *
4 * AUTHOR: Capt Allan F. Masty, GCS-83D *
;ﬁ bd HISTORY: VSN A1 - 3 November 1983 *
b * ®
& (:B ERERRRER RS R R AR R RN R RN AR R NN RN RN R AR RN ERNRRRS
) CalcElapsedTime ()
;Q {
o int k ;
GetCurrentTime () ;
& if ({( ticks -= StartTic ) < 0 )
.‘c
o) ticks += 60 ;
' -=Seconds ;
}
X if ( ( seconds -= StartSec ) < 0 )
5 {
o seconds +z 60 ;
= ~=minutes ;
§ L]
w if ({( minutes -= StartMin ) < 0 )
minutes = 60 ;
- -=hours ;
$ R0
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S if ( ( hours == StartHr ) < 0 )
hours += 24 ;

return ;
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D.2.6 DispElapsedTime

VAARAZAZERZ XA 2222222 2222222222222 222222222 2222222222222 2

*®

MODULE NUMBER / NAME:

DATE:
VERSION:
FUNCTION:

INPUTS:
OUTPUTS:

GLOBAL VARIABLES USED:

GLOBAL TABLES USED:
GLOBAL TABLES CHANGED:

FILES READ:
FILES WRITTEN
MODULES CALLE

D:

CALLING MODULES:

AUTHOR:
HISTORY:

(222X 222222222222 2222222222222 22 X2 22222222 2222222222222 %)

Disp%lapsedTime O
int k

CalcElapsedTime ()

tim
tim
tim
tim
tim
tim
tim
tim
tim
tim
tim

o
—

—
e e bl e e d hnd bmd d d
i wmnn s unn
PN @ SN g NN g N~
oo (2 (2 o0 T T oo
@® D = o

OWWIOWN WN

”~~ laalanlenlenlan an N an Nane ¥ o K ann ¥ oy |
—

for
printf ("\n");

return ;

hours
hours
’
nutes
nutes
’
conds
conds

t{cks
ticks

QN RN

N\ ;N

#*
*
]
*
]
»
*
*
*
*
* GLOBAL VARIABLES CHANGED:
*
*
*
*
#
*
*
*
]
*
*

10
10

10
10

10
10

10
10

-’

st

)
)

)
)

X.6

3 Nov 83

A1l

Displays (upon the SOC terminal
screen) the time duration
determined in CalcElapsedTime,

NONE
NONE
NONE
NONE
tim
tim
NONE
NONE
X.5
3

Capt Allan F. Masty, GCS-83D
VSN A1 -

+ 1o
+ ot

+ IOI
+ 1ot

+* ot
+ 1ot

+ 101
+ LR

D-62

k = 0; k < sizeof (tim); k++
printf ("%c", tim [k] )

DispElapsedTime

CalcElapsedTime
TermSystem

3 November 1983
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D.2.7 GatherStats

/************i***&***********************************************

#

* MODULE NUMBER / NAME: X.7 - GatherStats
*

* DATE: 3 Nov 83

bd VERSION: A1

# FUNCTION: Copies node queue accounting

* information to file LSIFEP.DAT
% for off-line data reduction.

® INPUTS: p = pointer to char array
* action = reason for call:

#

® 1 = entry into node

» 2 = exit from node

» OQUTPUTS: NONE

* GLOBAL VARIABLES USED: NONE

bd GLOBAL VARIABLES CHANGED: NONE

* GLOBAL TABLES USED: tim

¥ GLOBAL TABLES CHANGED: NONE

# FILES READ: NONE

® FILES WRITTEN: LSIFEP.DAT

* MODULES CALLED: NONE

* CALLING MODULES: 2.1.2 - MoveMsgtoNodeTTxDMA
* 2.3.1 = TTxtoDMAOutput

b 2.3.2 = DMAtoTTxOutput

#

b AUTHOR: Capt Allan F. Masty, GCS-83D

: HISTORY: VSN A1 = 3 November 1983
ARRRRRRRRRR AR NSRS R R RN RN R RN R AR RN RN R AR RN AR RN RN R RRRERRERRS

GatherStats ( p, action )

char pl] ;
int action ;
{
int k ;
char *c ;

GetCurrentTime ( ) ;

for ( k = 0; k < sizeof (tim); k++ )
pute ( tim [k], fp ) ;

pute (' ', fp ) ;
pute ( action + '0', fp ) ;
pute (' ', fp ) ;

D-63
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for ( ¢ = 0; ¢ < THTSIZE; c++ )
pute ( p [ e 1, fp J

pute ( '\015', fp ) ;
pute ( '\012', fp ) ;

return ;

}

D-64




"
5% .

) l‘
R

I3

~ll

”_
5t
-‘t'-#-

4
s

Al
£
Sake
L
.

s

g

ﬂl’ﬂ'ﬂa‘h&

- P

APPENDIX E
LSI FEP MEMORY LOAD MAP (LSIFEP.MAP)

This 1is the baseline Memory Load Map for the

LSIFEX.SAV executable program image.
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. RT-11 LINK VO06.01B Load Map Fri 07-0ct-83 00:00:00
e LSIFEX.SAV Title: .MAIN., Ident: VO4.00

Section Addr Size Global Value Global Value

- . ABS. 000000 001000  (RW,I,GBL,ABS,OVR)
- $SYSV$ 000012
- $OHAND 001000 000252  (RW,I,GBL,REL,CON)

$OVRHV 001000 $OVRH 001004
. V$READ 001034 V$DONE 001046
X $VDF5 001234 $VDF4 001236
: $VDF1 001246 $VDF2 001250
i~ $OTABL 001252 000160  (RW,D,GBL,REL,OVR)
s 001432 057052 (RW,I,LCL,REL,CON)
SHELL 001432 SHELLX 001452
NXTARG 002436 SHLERR 003016
CLOSTD 003066 GETCHA 003140
PUTCHA 003206 GETS 003442
FGETS 003706 PUTS 004206
- FPUTS 004262 FREOPE 004342
. PRINTF 004374 FPRINT O00u4424

PRI

3
&L

2 SPRINT 004504 OUTF 004566
& OUTDEC 005376 OUTOCT 005670
R STRCAT 005772 STRCMP 006116
¥ STRCOM 006256 STRCOP 006416
N : STRCPY 006520 STRLEN 006576
i Y ECHAR 006646 ENCHAR 006656
- GCHAR 006714 INTASC 006756
- ASCIII 007102 GETTIM 007236
3 AGIFL 007506 ECHO 007510
< ENABLO 007512 LINE 007514
LINEPT 007722 OBPTR 007724
OBSIZE 007726 RARY1T 007730
STDERR 007732 STDIN 007734
STDOUT 007736 UCONLY 007740
CCSWIT 007742 CCMPY 010006
CCMULT 010006 CCDIV 010114
CCASR 010344 CCLRS 010344
CCLLS 010366 CCASL 010366
- SETIDP 010414 ASTFN 010426
A GETACH 010756 PUTACH 010772
- INITIA 011006 ENTINT 011022
" RETINT 011052 GTIME 011076

GAREA 011172 EXIT 011176
; NODECH 014140 MAIN 024000
v INITSY 024026 INITPS 026246

INITIN 030174 PERFNO 030630
SRVINP 032276 EVALSO 033066
MOVEMS 033466 BLDTRA 034140
SRVOUT 034746 SRVNOD 035432

I N
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SYS$I 060504 000114

a

SYS$s 060620 000004

-~

Segment size = 060624

AR a8 8,

P o RS Y

Partition 000001
100002 006676

DR S S )

£ v
276 2

)
a2 8

Segment size = 006676

Virtual overlay region

Partition 000002

SIS -

120002 013576

(ST e ¢

[ A Ay At Wt Uy &

TTXTOD 036556
TERMSY 040176
T1INTE 041472
T3INTE 042520
TSINTE 044224
TTINTE 045730
SETUPF 050000
DMABUS 050352
ENDIDX 050356
FP 050362
LASTMS 050366
NBT 050372
PST 050424
STOPID 051416
INCHAR 051464

DMATOT
SOCINT
T2INTE
TYINTE
T6INTE
DMAINT
ABORTF
DMAWC
FILEOP
GODMAF
NBTCHA
PSTCHA
STARTI
THT
OUTCHA

(RW,I,LCL,REL,CON)

$DIVTK 060504
ISPY 060576

$DIV6O
$GVAL

(RW,D,LCL,REL, CON)

$SYSLB 060620
$CRASH 060623

12490, words

000001

Segment 000001

$LOCK

(RW,I,LCL,REL,CON)

DISPPS@ 100002
GETCUR 104242
DISPELE@ 105234
GATHERE 106256
MINUTE 106606
STARTM 106612
STARTT 106616
TIME 106622
TICKS 106642
1759. words

000002

Segment 000002

DISPNBE
DISPTIE
CALCEL
HOURS
STARTH
STARTS
SECOND
TIM

(RW, I,LCL,REL,CON)

E-3

037356
040572
041656
043362
045066
046572
050350
050354
050360
050364
050370
050422
051414
051420
055074

060532
060602

060622

102540
105112
105736
106604
106610
106614
106620
106626
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FOPEN @ 120010 FSIZE 120414
FDELET 120416 FCLOSEE@ 120534
GETC €@ 133122 PUTC @ 133306

- Segment size = 013576 = 3007. words

AN

5

2N _ Transfer address = 001432

™ High limit = 060622 = 12489. words

3 Virtual high limit = 133576 = 23487. words,
« next free address = 140000

Extended memory required = 022500 = 4768. words
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APPENDIX F
LSI FEP USER'S GUIDE

This Appendix contains detailed information on the
operation of the LSI FEP system. It contains sections
describing System Initialization, System Operation, System
Termination, and Off-=line Accounting Data Reduction.
Additional reference for the commands recognized by the

RT=-11 monitor c¢an be found in the RT=11 documentation set

[91.

F.1 System Initialization =

The steps required for system initialization include
Booting the RT-11XM Monitor, Setting the Date and Time, and
Starting the LSIFEP Program Image.
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F.1.1 Booting the RT-11XM Monitor - The operator places

the system disk (volume ID = "RT11A") into the leftmost disk
drive of the Plessey Peripheral Systems cabinet. This disk
drive (DYO:) 1is known to the system as the "system" disk
drive. The rightmost disk drive (DY1:) 1is known to the
system as the "user" disk drive. The operator then keys in

the following (upper case) command:
DY¥<er>

where <cr> represents the "return" key. This tells the
microcode bootstrap program to boot the system from device
DYO. When the boot completes, the RT11SJ monitor will be
active. To boot the RT11XM monitor from the RT11SJ monitor,

type the command:
BOOT RT11XM<er>

To return to the RT11SJ monitor from the RT11XM monitor,

type the command:
BOOT RT11SJ<er>

At anytime during operation, the operator may desire
to reboot the system without powering-down and powering-up
the Plessey. This can be accomplished by toggling the
"BOOT" switch on the front Plessey panel. This action will
result in the microcode bootstrap 1loader outputting an

asterisk on the system console screen, At this point, the

F=2




above boot command can again be given, The contents

of disk volume ID "RT11A" are contained in Figure F-1.

F.1.2 Setting the Date and Time - When the system is
first booted, no date will be known to the monitor. To
remind the operator to set the date, the start-up indirect
command files for both monitors ("STARTS.COM and STARTX.COM)
contain a request to the operating system to display the

current date., This command:
DATE<cr>

Will result in the monitor responding with the message:
?KMON~W-No Date

At this point, the operator should set the date by an

appropriate command:
DATE 16-0CT-83<cr>

Time can then be set. First, ensure that the "LTC"
switch mounted on the front Plessey panel is in the "ON"
position. This switch controls the Line Time Clock
interrupt hardware feature. Then, 1issue the appropriate

command:

TIME 10:45:30<cr>

F=3
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16=0ct-=83
Volume ID: RT114A
Owner : Masty
PIP +SAV 23
DIR «SAV 17
RESORC,.SAV 15
MACRO ,SAV 51
LINK .SAV 41
oDT .0BJ 9
BATCH .SAV 26
DXX .3YS 4
DMX «SYS 5
LPX .S5YS 2
CRX .3YS 3
RT11XM,.SYS 102
TT .3YS 2
RT11SJ.SYS 67
KED +SAV 60
DUMP ,SAV 8
SYSLIB,.OBJ 47
ERROUT,.SAV 17
STARTS.COM 1
STARTX.COM 1

09-Sep-80
09-Sep-80
09-Sep-80
09-Sep-80
09-Sep-80
21-Feb-80
21-Feb-80
O4-Aug-83
O04-Aug-83
23-Dec-81
04-Aug-83
O4-Aug-83
09-Sep-80
09-Sep-80
09-Sep-80
09-Sep-80
13-Jul-81
21-Feb=-80
26-Aug-83
16-Sep=-83

39 Files, 854 Blocks
120 Free blocks

DUP . SAV
FORMAT.SAV
SYSMAC,.SML
CREF .SAV
SRCCOM, SAV
QUEUE .REL
BAX .SYS
DYX . SYS
MTX .SYS
LSX . SYS
NLX .SYS
SWAP .SYS
DY .SYS
STARTS .BAK
RUNOFF,SAV
LIBR .SAV
QUEMAN, SAV
ccC «SAV
STARTX.BAK

N

O —=Nw
2NILWNDOW a2 NNV NDO EN WO

09-Sep-80
09-Sep-80
09-Sep-80
09-Sep-80
09-Sep-80
09-Sep-80
04-Aug-83
Ol4-Aug-83
O4-Aug-83
23=-Dec-81
Ol4-Aug-83
09-Sep-80
09-Sep-80
02-Aug-83
10-Aug-81
31-Mar-81
21-Feb-80
02-Nov-82
16-Sep-83

Fig.

F-1
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F.1.3 Starting the LSIFEP Program Image - Disk (volume
j? ID = n"LSI FEP 2") contains the LSI FEP program. The
contents of this disk are contained in Figure F-=2. This

disk must be mounted in the DY1 drive and the following

command issued:
RUN LSIFEP<er>
The 'C!' Shell responds with a prompt:
++

in response to which the operator will key a carriage
return, Following this last carriage return, the 'C' Shell

releases control to the "main" program module 1in the

LSIFEP.SAV program. After program initialization has

completed, the message:

++++++++ FEP Activated at 10:46:15

will be displayed upon the system operator console,

LSIFEP.SAV 1is a program image which can be run using the
RT11SJ or RT11XM monitor. The LSI FEP "2 disk also contains
the LSIFEX.SAV program image, which can only be run with the
RT11XM monitor.
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%
\1.0
N
\'_:
N\,
) ! i
NN | !
- ! 16=0ct=83 i
' ! Volume ID: LSI FEP #1 !
I ! Owner : Masty ;
i
o ! D .COM 1 28=Sep-83 F .COM 1 28-Sep-83 !
! X .COM 2 28-Sep-83 c .COM 5 28-Sep-83 ]
! LSIFEX.MAP 7 07-=0ct-83 CHS .RNO 1 03-0ct-83 |
- | CH6 «RNO 1 03-0ct-83 FIG11 .RNO 4 03-0ct-83 !
o ! FIG31 .RNO 4 03-0ct-83 FIG32 .RNO 2 O0U4-0Oct-83 !
.2 ! TABLE1.RNO 14 O0U4-0ct-83 FIG21 .RNO 3 04-0ct-83 |
-~ ! A1 .RNO 25 03-0ct-83 TABLE2.RNO 4 03-0ct-83 |
! A6 .RNO 1 03-0ct-83 AT +RNO 3 03-0ct=83 !
] A8 +RNO 1 03=0ct-83 FIG41 .RNO 6 03-0ct-83 ]
y! ! B .COM 1 03=0ct=83 CH4 .RNO 32 07-0ct=-83 !
< ! CH3 .RNO 40 12-0ct-=83 LFEPLO.C 47 12-0ct-=83 ]
;s ] BIB .RNO 11 07-0ct-83 A5 .RNO 8 07-0ct-83 !
-ﬁ ! CH2 .RNO 74 12=0ct-83 A3 .RNO 68 07-0ct-83 !
3 ! THESIS.RNO 3 12=-0ct=83 A2 .RNO 23 07-0ct-83 !
! CH1 .RNO 30 12-0ct-83 AL .RNO 50 12~0ct-83 E
> ! 1
e ! 30 Files, 472 Blocks |
D : 502 Free blocks §
& @ | !
;::i Fig. F=2 DY1: Directory
";i
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e
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F.2 System Operation -

The LSI FEP system is expected to function with

no

required operator control or maintenance activity. Three

commands have been implemented for operator monitoring

of

the system status, These commands are described in the

following paragraphs.

F.2.1 NBT - The status of the Node Buffer Table can

displayed by issuing the command:
NBT<cr>

from the SOC terminal to the LSI FEP program. The format

a typical Node Buffer Table is contained in Figure F-3,

F.2.2 PST = The status of the Port Status Table can

displayed by issuing the command:
PST<er>

from the SOC terminal to the LSI FEP program. The format

a typical Port Status Table is contained in Figure F-4,

F.2.3 TIME - The current system time can be displayed

issuing the command:

TIME<er>

from the SOC terminal to the LSI FEP program.

F-7
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‘x. s E
a ) !
.- | |
3 ! |
b, ; i low put get high E
- |
! ]
b | 0 0 0 0 1999 :
'S ; 1 2000 2000 2000 3999 §
N ! i
! !
: i !
& ! !
» I
-, ! LEGEND: |
L i |
3 ] i = index into NBT i
| 0 = TTxDMA node !
- ! 1 = DMATTx node i
[} |
' | low = NBT [i].LowIdx !
< ! put = NBT [i]).Putldx !
; ! get = NBT [i].GetIdx !
O | high = NBT [i].HighIdx !
¥ ! !
| !
- ! !
¥
] Fig. F=3 Node Buffer Table (NBT)
- |
:ﬁ ‘
s
S
N \
\
; ~.}:{.
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Can
R

BN e

! |

! 1

! | !

V { 1 TID M I.,LOW I.PUT I.GET I.HIGH O.LOW O.PUT O.GET O.HIGH |

J | e — = i

o | |

™ | 0 SsoC L 0 4 0 199 0 0 0 199 |

\ ! 1 T.1 L 200 200 200 399 200 200 200 399 |

) 1 2 T.2 L 400 400 400 599 400 400 400 599 |

W { 3 T.3 L 600 600 600 799 600 600 600 799 |
2 ! 4 T.4 L 800 800 800 999 800 800 800 999 |~

: ! 5 T.5 L 1000 1000 1000 1199 1000 1000 1000 1199 |

i 6 T.6 L 1200 1200 1200 1399 1200 1200 1200 1399 |

3 i 7 T.7T L 1400 1400 1400 1599 1400 1400 1400 1599 |

Fs | 8 DMA L 1600 1600 1600 1799 1600 1600 1600 1799 E

: i -

5 | !

i | !

] LEGEND: E

] .

\ | i = index into PST !

! TID = Terminal identification i

! i

! M = Terminal Mode |

6 ! 'L' = Line !

! 'C!' = Character !

' i

3 ! I.LOW = PST [i].InLowIdx ( InChar index) |

< | I.PUT = PST [i].InPutldx !

" | I.GET = PST [i].InGetIdx :

i I.HIGH = PST [i].InHighIdx !

X ! O0.LOW = PST [i].OutLowIdx (OutChar index) i

¥ | 0.PUT = PST [i].OutPutIdx |

& | O.HIGH = PST [i].OutHighIdx i

th ! 1

! !

! !

Fig. F=l4 Port Status Table (PST)

F=9
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SO F.3 System Termination -

The system can be terminated in an orderly manner by
issuing a control-C (C) from the SOC terminal. The "CTRL"

g key is held down while the "C" key 1is depressed. This

-3 results in the LSIFEP program restoring interrupt vector
L? addresses and closing the LSIFEP.DAT file prior to returning
;1 control to the monitor.

'? F.4 Off-line Accounting Data Reduction -

-

;5 The LSIFEP.DAT file is created during each run of
; ‘j§ the LSIFEP.SAV program. This file contains the accounting
:i information describing the data movement through the network
e nodes.  Each line in the file contains the time of
; recording, a movement code, and the message Transport
i Header. A typical LSIFEP.DAT file appears in Figure F-5.
3 Although the raw data file is produced, time did not allow
% the generation of a data reduction program which could
% process this file.
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record format:

o}

—— T ——— ——— —— T SR =S T - S S S Thap S CEEE GEAP S TP . ———— — T P - S = S e Wy WP P Sl e —— ————— ————

10:16:29:18
10:16:29: 21
10:16:30:58
10:16:31:01
10:16:37:27
10:16:37:30
10:16:40:21
10:16:40:24
10:16:44:32
10:16: 4434

hours (2
minutes (2
seconds (2
ticks (2

1
2

Terminal mode
Message Sequence Number
Message Character Count

Node queue ID

N =) =N =)= ) —

chars)
chars)
chars)
chars)

reason for statisties gathering
entry into queue
exit from queue

Terminal Identifier

T.1L00020018TTx
T.1L00020018TTx
SOCL0O0030020DMA
SOCL00030020DMA
T.5L00040020TTx
T.5L00040020TTx
SOCL00050018TTx
SOCL00050018TTx
T.7TL0O0060058TTx
T.7TLO0D060058TTx

HH:MM:SS:TT R TID M NUMB COUN NOD

(1 char)

chars)
char )
chars)
chars)

chars)

"1 .:o i .-l\‘l‘ s : :

P

<
o

.-.
.
p
.

.

24
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LSIFEP.DAT File Format
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LSI FEP PROGRAMMER'S GUIDE

’ " .‘f"_w" -“,9' -

i This appendix provides software documentation for
j the LSI FEP maintenance programmer. It begins by describing
f (39 the LSI-11 source code edit facility =-- the Keypad Editor
'3 [131. It then proceeds with descriptions of the
E' compilation, assembly, and 1linking processes. Amplifying

information can be found in Chapter 4, Appendix C, and

= Appendix D.

'; G.1 Editing The Source Code -

Ry

- The PDP-11 Keypad Editor (KED) was used to create
,3 the source programs during this implementation., KED is used
.

; on a DEC VT-100 terminal and requires the file 'KED.SAV' on
T )

~ '::::-..

&

G=1

EAO




2
»
l;: the DYO: disk ( Fig F=1 ). KED allows use of the
%2 e terminal's alphanumeric keys as well as the small keypad.
{

i The keypad keys activate programmed requests for cursor
¢

ﬁ: positioning, text deletion, text string search, and other
"\-

e functions described in DEC documentation [13].

e Activation of KED is accomplished by the command:
= EDIT LFEPLO.C<cr>

,Q where <cr> represents striking the RETURN key. After this
<
<}i command, any of the KED directives [13] can be issued.
Aix

U
;é G.2 Compiling The Source Code -

5 Y
g @
™

] The Telecon 'C' compiler was used to compile the 'C!
oy

) language source code into RT-11 Macro-11 assembly
n,

. instructions. The file "CC,SAV"™ must exist on the DYO:

q

’l

2 drive [ fig F-1 J. The 'C' compiler is activated by the
i command :

::: R CCler>

SE S

":

;: at which time the 'C' shell prompt appears:

++
The programmer then keys the input ('C!' source) file name

i

T oo
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and the output (Macro-11) file name [21; 23]. The format is

as follows:

LFEPLO.C >LFEPLO.MAC<cr>

All diagnostics from the compiler are directed to
the display terminal screen. The macro file which is
produced as output may be several times the size (disk
blocks) of the input 'C*' text file. To ensure a large
contiguous disk area for the macro file, it 1is sometimes
necessary to "SQUEEZE" the DY1: disk prior to invoking the
'C' compiler. The format for the squeeze command [9:U4,167]

is as follows:

SQUEEZE/NOQUERY DY1:<er>

G.3 Assembling The Macro File -

The PDP-11 Macro Assembler [15] was used to produce
the object modules. Input to the assembler consists of
macro files containing the PDP-11 assembly instructions

[20:53-162]1. The format [9:4.128] of the macro command is:

MACRO LFEPLO<cr>

This command specifies an input file of "LFEPLO.MAC"™ ( .MAC

G-3
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is default file type) and an output file of "LFEPLO.OBJ" (

R

. 0 1
a'm .

éﬁ iﬁ' default file type is .0OBJ while default file name is same as
- the input file name).

')

%

NS

R

;3 G.4 Linking The Object Modules =-

So far, the documentation has only addressed the
éﬁ programming issues for one program ( LFEPLO.C ) through
:§ edit, compile, and assembly. Any functions and data items
.i that could not be found by the compiler during compilation
Ei were treated as external references which would be supplied
%? later. The macro assembler, likewise, deferred action on
_‘ (:B these externals and passed on the object file with these
f@ externals still undefined. The linker, however, requires
!3 all references to be resolved before it can create the .SAV
- executable program image file. Therefore, it is at
:§ this stage that all the pieces [ para 4.3 1 of the LSIFEP
ég (or LSIFEX) system are brought together. Two indirect

X command files [9:4.9] have been created to accomplish the
.§ linking function. These indirect command files exist on the
;§ DY1: disk [ fig F-2 ] as "F.COM" (creates "LSIFEP.SAV") and
T: "X.COM" (creates "LSIFEX,SAV"), When all the ",0BJ" files
:3 have been created, the "F.COM" file can be invoked using the
ﬁ command :
=
= Y
3 G-4




F<ler>

The RT-11 monitor then executes the commands within
the "F.COM" file. The file contents are shown in Figure G-1
for "F,COM" and Figure G-2 for "X,COM", The output
of the "F.COMM" file consists of the "LSIFEP.SAV" executable
image and a text file "LSIFEP.MAP" which shows the memory
mapping produced by the linker. The contents of
"LSIFEX.MAP" is contained in Appendix E. Execution
instructions for the executable images are contained in

Appendix F.
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! This indirect command file is F.COM ---
! It is used to invoke th RT-11 Linker.

!

! F.COM is invoked by typing er

at the console keyboard,

The following files must be defined
prior to invoking the linker:

LFEPIO.OBJ
LFMLLO.OBJ
LFMLHI.OBJ

NBUFF.OBJ
LFEPHI.OBJ
LFEPLO.OBJ

TBUFF.OBJ

The linker creates two files:

LSIFEP.SAV
LSIFEP.MAP

CUD SR Sum CuB S YWD Cum CED CUN SUN Smn Cab SR B Gun S oum

r link
lsifep,lsifep=1fepio,lfmllo,l1fmlhi,nbuff//
lfephi,lfeplo,tbuff//

“C

Fig. G=1 'F.COM* Indirect Command File
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X.COM is invoked by typing

at the console keyboard.

prior to invoking X.COM:

This indirect command file is X.COM
It is used to invoke the RT-11 Linker.

ex

The following files must be defined

The commands forwarded to the Linker will create

an extended memory LSIFEX.SAV file which
can be run on an LSI-11/23 using the

RT11XM extended memory monitor.

LFEPIO.0OBJ - linked to memory
LFMLLO.OBJ - linked to memory
LFMLHI,.OBJ - linked to memory
NBUFF.OBJ - linked to memory
LFEPHI.OBJ - linked to memory
LFEPLO.OBJ - linked to memory
TBUFF.OBJ - linked to memory
The linker creates two files:
LSIFEX.SAV
LSIFEX.MAP
r link
lsifex,1sifex=z1fepio,lfmllo,nbuff,lfeplo,tbuff//
1fephi/V:1
1fmlhi/Vv:2//

Fig. G=2

Indirect Command File




KPP 4
D T JAL)
R Y

-ﬁ
4 _‘_IA_";,.

7

NPORNT

LA > XL
tg}?} - RSO

[ .

4
&

': *

¢d

4 A

VITA

Capt Allan F. Masty was born in Detroit,
13 February 1949, He graduated from St.

Michigan on

Martin HS,

Detroit, in 1967. He received a Bachelor of Science degree

in Physics from the University of Detroit in 1971. He then

taught high school mathematics and physic¢s for

three years

prior to entering Air Force Officer Training School in 1974.

Upon commissioning, he was assigned as a Space

Surveillance

Officer at Detactment 7, 14th Missile Warning Squadron

(ADCOM), MacDill AFB, Florida.

During this

tour, he

cross-trained from the space operations career field into

the computer programming career field. He was then assigned

to the first PAVE PAWS SLBM Early Warning

unit --- 6th

Missile Warning Squadron, Otis AFB, Massachusetts «-- in

1978. He then transferred to the second PAVE PAWS site ---

Tth Missile Warning Squadron, Beale AFB, California =-- in

1979. While at Beale AFB, he performed duties as the Chief,

Tactical Applications Branch for the PAVE

Programming Agency (SPA), Stategic Air Command.

PAWS System

He entered

the Air Force Institute of Technology in 1982 to pursue a

Masters degree in Computer Science.
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